Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty

[1]  M. Kavanaugh,et al.  Redefining the End Game for Groundwater Remediation , 2013, Ground water.

[2]  Jianfeng Wu,et al.  Optimal design of groundwater remediation systems using a multi-objective fast harmony search algorithm , 2012, Hydrogeology Journal.

[3]  Bithin Datta,et al.  Uncertainty based optimal monitoring network design for a chlorinated hydrocarbon contaminated site , 2011, Environmental monitoring and assessment.

[4]  T. S. Singh,et al.  Multi-objective optimization for optimal groundwater remediation design and management systems , 2010 .

[5]  George Kourakos,et al.  Optimal Groundwater Remediation Under Uncertainty Using Multi-objective Optimization , 2006 .

[6]  Jianfeng Wu,et al.  A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty , 2006 .

[7]  Patrick M. Reed,et al.  Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design , 2005 .

[8]  Jianfeng Wu,et al.  Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. , 2005, Journal of contaminant hydrology.

[9]  Abhishek Singh,et al.  Uncertainty‐based multiobjective optimization of groundwater remediation design , 2003 .

[10]  Ximing Cai,et al.  Physical and economic efficiency of water use in the river basin: Implications for efficient water management , 2003 .

[11]  Cass T. Miller,et al.  Optimal design for problems involving flow and transport phenomena in saturated subsurface systems , 2002 .

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[14]  Mario F. Triola,et al.  Essentials of Statistics , 2001 .

[15]  D. Goldberg,et al.  A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data , 2001 .

[16]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[17]  David E. Goldberg,et al.  Risk‐based in situ bioremediation design using a noisy genetic algorithm , 2000 .

[18]  Paul P. Wang,et al.  MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide , 1999 .

[19]  C. Zheng,et al.  An integrated global and local optimization approach for remediation system design , 1999 .

[20]  C. Shoemaker,et al.  DYNAMIC OPTIMAL CONTROL OF IN-SITU BIOREMEDIATION OF GROUND WATER , 1998 .

[21]  M. Wang,et al.  Optimal Remediation Policy Selection under General Conditions , 1997 .

[22]  Brad L. Miller,et al.  Noise, sampling, and efficient genetic algorthms , 1997 .

[23]  Arlen W. Harbaugh,et al.  User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model , 1996 .

[24]  Allan L. Gutjahr,et al.  Cross‐correlated random field generation with the direct Fourier Transform Method , 1993 .

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .