Construction of Near-Capacity Protograph LDPC Code Sequences With Block-Error Thresholds

Density evolution for protograph low-density parity-check (LDPC) codes is considered, and it is shown that the message-error rate falls double-exponentially with iterations whenever the degree-2 subgraph of the protograph is cycle-free and noise level is below threshold. Conditions for stability of protograph density evolution are established and related to the structure of the protograph. Using large-girth graphs, sequences of protograph LDPC codes with block-error threshold equal to bit-error threshold and block-error rate falling near-exponentially with blocklength are constructed deterministically. Small-sized protographs are optimized to obtain thresholds near capacity for binary erasure and binary-input Gaussian channels.

[1]  Andrew Thangaraj,et al.  Deterministic constructions for large girth protograph LDPC codes , 2013, 2013 IEEE International Symposium on Information Theory.

[2]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  Michael Lentmaier,et al.  Spatially Coupled LDPC Codes Constructed From Protographs , 2014, IEEE Transactions on Information Theory.

[5]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[6]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[7]  Richard D. Wesel,et al.  Protograph-Based Raptor-Like LDPC Codes , 2014, IEEE Transactions on Communications.

[8]  P. Vontobel,et al.  Constructions of regular and irregular LDPC codes using Ramanujan graphs and ideas from Margulis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[9]  R. Storn,et al.  Design of efficient erasure codes with differential evolution , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[10]  Felix Lazebnik,et al.  On the connectivity of certain graphs of high girth , 2004, Discret. Math..

[11]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[12]  Lin Wang,et al.  Design of Protograph LDPC Codes for Partial Response Channels , 2012, IEEE Transactions on Communications.

[13]  Aria Nosratinia,et al.  The design of rate-compatible protograph LDPC codes , 2010 .

[14]  Felix Lazebnik,et al.  A characterization of the components of the graphs D(k, q) , 1996, Discret. Math..

[15]  Andrew Thangaraj,et al.  Strong Secrecy on the Binary Erasure Wiretap Channel Using Large-Girth LDPC Codes , 2010, IEEE Transactions on Information Forensics and Security.

[16]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[17]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[18]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[19]  William E. Ryan,et al.  Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes , 2011, IEEE Transactions on Information Theory.

[20]  William E. Ryan,et al.  On the existence of typical minimum distance for protograph-based LDPC codes , 2010, 2010 Information Theory and Applications Workshop (ITA).

[21]  Dariush Divsalar,et al.  Construction of Protograph LDPC Codes with Linear Minimum Distance , 2006, 2006 IEEE International Symposium on Information Theory.

[22]  Uriel G. Rothblum,et al.  Nonnegative Matrices and Stochastic Matrices , 2013 .

[23]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[24]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[25]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[28]  Xavier Dahan,et al.  Regular graphs of large girth and arbitrary degree , 2011, Comb..

[29]  Gerhard Fettweis,et al.  Exact erasure channel density evolution for protograph-based generalized LDPC codes , 2009, 2009 IEEE International Symposium on Information Theory.

[30]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[31]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[32]  Alexandre Graell i Amat,et al.  Terminated and Tailbiting Spatially Coupled Codes With Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems , 2014, Journal of Lightwave Technology.

[33]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[34]  Guoan Bi,et al.  Design and Analysis of Root-Protograph LDPC Codes for Non-Ergodic Block-Fading Channels , 2015, IEEE Transactions on Wireless Communications.

[35]  William Ryan,et al.  Channel Codes by William Ryan , 2009 .

[36]  A. Shapira,et al.  Extremal Graph Theory , 2013 .