Thermodynamic Definitions of Temperature and Kappa and Introduction of the Entropy Defect

This paper develops explicit and consistent definitions of the independent thermodynamic properties of temperature and the kappa index within the framework of nonextensive statistical mechanics and shows their connection with the formalism of kappa distributions. By defining the “entropy defect” in the composition of a system, we show how the nonextensive entropy of systems with correlations differs from the sum of the entropies of their constituents of these systems. A system is composed extensively when its elementary subsystems are independent, interacting with no correlations; this leads to an extensive system entropy, which is simply the sum of the subsystem entropies. In contrast, a system is composed nonextensively when its elementary subsystems are connected through long-range interactions that produce correlations. This leads to an entropy defect that quantifies the missing entropy, analogous to the mass defect that quantifies the mass (energy) associated with assembling subatomic particles. We develop thermodynamic definitions of kappa and temperature that connect with the corresponding kinetic definitions originated from kappa distributions. Finally, we show that the entropy of a system, composed by a number of subsystems with correlations, is determined using both discrete and continuous descriptions, and find: (i) the resulted entropic form expressed in terms of thermodynamic parameters; (ii) an optimal relationship between kappa and temperature; and (iii) the correlation coefficient to be inversely proportional to the temperature logarithm.

[1]  F. Allegrini,et al.  Anisotropic Kappa Distributions. I. Formulation Based on Particle Correlations , 2020, 2012.08601.

[2]  G. Zank,et al.  Estimation of Turbulent Heating of Solar Wind Protons at 1 au , 2020, The Astrophysical Journal.

[3]  G. Livadiotis Turbulent Heating in Solar Wind Thermodynamics , 2019, The Astrophysical Journal.

[4]  G. Livadiotis,et al.  Long-term Correlations of Polytropic Indices with Kappa Distributions in Solar Wind Plasma near 1 au , 2019, The Astrophysical Journal.

[5]  P. Yoon Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes , 2019 .

[6]  G. Livadiotis On the generalized formulation of Debye shielding in plasmas , 2019, Physics of Plasmas.

[7]  D. Mccomas,et al.  Non-equilibrium Distributions of Interstellar Neutrals and the Temperature of the Local Interstellar Medium , 2019, The Astrophysical Journal.

[8]  G. Livadiotis Kappa Distributions: Statistical Physics and Thermodynamics of Space and Astrophysical Plasmas , 2018, Universe.

[9]  S. Krimigis,et al.  Energetic Ion Moments and Polytropic Index in Saturn's Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on κ‐Distribution Functions , 2018, Journal of Geophysical Research: Space Physics.

[10]  B. Dennis,et al.  Nearly exact discretization of single species population models , 2018 .

[11]  G. Livadiotis Thermodynamic origin of kappa distributions , 2018, EPL (Europhysics Letters).

[12]  B. Shizgal Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. , 2018, Physical review. E.

[13]  M. Desai,et al.  Generation of Kappa Distributions in Solar Wind at 1 au , 2018 .

[14]  G. Livadiotis Using Kappa Distributions to Identify the Potential Energy , 2018 .

[15]  G. Livadiotis Derivation of the entropic formula for the statistical mechanics of space plasmas , 2017 .

[16]  George Livadiotis,et al.  On the Simplification of Statistical Mechanics for Space Plasmas , 2017, Entropy.

[17]  M. Desai,et al.  PLASMA-FIELD COUPLING AT SMALL LENGTH SCALES IN SOLAR WIND NEAR 1 au , 2016 .

[18]  S. Schwartz,et al.  Characterizing cometary electrons with kappa distributions , 2016 .

[19]  George Livadiotis,et al.  Kappa and q Indices: Dependence on the Degrees of Freedom , 2015, Entropy.

[20]  G. Livadiotis Introduction to special section on Origins and Properties of Kappa Distributions: Statistical Background and Properties of Kappa Distributions in Space Plasmas , 2015 .

[21]  George Livadiotis,et al.  "Lagrangian Temperature": Derivation and Physical Meaning for Systems Described by Kappa Distributions , 2014, Entropy.

[22]  D. Mccomas,et al.  Large‐scale quantization from local correlations in space plasmas , 2014 .

[23]  D. Mccomas,et al.  Electrostatic shielding in plasmas and the physical meaning of the Debye length , 2014, Journal of Plasma Physics.

[24]  F. Scholkmann A Prediction of an Additional Planet of the Extrasolar Planetary System Kepler-62 Based on the Planetary Distances' Long-Range Order , 2013 .

[25]  D. Mccomas,et al.  Characterizing the dayside magnetosheath using energetic neutral atoms: IBEX and THEMIS observations , 2013 .

[26]  D. Mccomas,et al.  Understanding Kappa Distributions: A Toolbox for Space Science and Astrophysics , 2013 .

[27]  George Livadiotis,et al.  Evidence of Large-Scale Quantization in Space Plasmas , 2013, Entropy.

[28]  Miomir S. Stankovic,et al.  Comments on "Nonextensive Entropies derived from Form Invariance of Pseudoadditivity" , 2012, ArXiv.

[29]  G. Zank,et al.  PICK-UP ION DISTRIBUTIONS AND THEIR INFLUENCE ON ENERGETIC NEUTRAL ATOM SPECTRAL CURVATURE , 2012 .

[30]  D. Mccomas,et al.  NON-EQUILIBRIUM THERMODYNAMIC PROCESSES: SPACE PLASMAS AND THE INNER HELIOSHEATH , 2012 .

[31]  D. Mccomas,et al.  INVARIANT KAPPA DISTRIBUTION IN SPACE PLASMAS OUT OF EQUILIBRIUM , 2011 .

[32]  George Livadiotis,et al.  FIRST SKY MAP OF THE INNER HELIOSHEATH TEMPERATURE USING IBEX SPECTRA , 2011 .

[33]  Jan Naudts,et al.  On the Thermodynamics of Classical Micro-Canonical Systems , 2010, Entropy.

[34]  George Livadiotis,et al.  Measure of the departure of the q-metastable stationary states from equilibrium , 2010 .

[35]  George Livadiotis,et al.  EXPLORING TRANSITIONS OF SPACE PLASMAS OUT OF EQUILIBRIUM , 2010 .

[36]  M. Gruntman,et al.  Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps , 2009, Science.

[37]  M. Gruntman,et al.  Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) , 2009, Science.

[38]  George Livadiotis,et al.  Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas , 2009 .

[39]  M. Gruntman,et al.  IBEX—Interstellar Boundary Explorer , 2009 .

[40]  G. Livadiotis Approach on Tsallis statistical interpretation of hydrogen-atom by adopting the generalized radial distribution function , 2009 .

[41]  F. Peeters,et al.  Two-dimensional binary clusters in a hard-wall trap: Structural and spectral properties. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Behrouz Mirza,et al.  Quasi-additivity of Tsallis entropies and correlated subsystems , 2007, 0705.0888.

[43]  T. Wada,et al.  Scaling property and the generalized entropy uniquely determined by a fundamental nonlinear differential equation , 2006, cond-mat/0608007.

[44]  G. Livadiotis,et al.  Numerical Approximation of the Percentage of Order for One-Dimensional Maps , 2005, Adv. Complex Syst..

[45]  Constantino Tsallis,et al.  Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Tsallis,et al.  On the extensivity of the Entropy SQ for n <= 3 Specially Correlated Binary Subsystems , 2004, Int. J. Bifurc. Chaos.

[47]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[48]  H. Suyari Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics , 2004, cond-mat/0401546.

[49]  B. Jankó,et al.  Structure and melting of two-species charged clusters in a parabolic trap. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Ernesto P. Borges A possible deformed algebra and calculus inspired in nonextensive thermostatistics , 2003, cond-mat/0304545.

[51]  Q. A. Wang,et al.  Generalized algebra within a nonextensive statistics , 2003, math-ph/0303061.

[52]  S. Abe Macroscopic thermodynamics based on composable nonextensive entropies , 2002 .

[53]  A. Méhauté,et al.  On the generalized entropy pseudoadditivity for complex systems , 2001, cond-mat/0111541.

[54]  M. Leubner A Nonextensive Entropy Approach to Kappa-Distributions , 2001, astro-ph/0111444.

[55]  T. Wada,et al.  The additivity of the pseudo-additive conditional entropy for a proper Tsallis’ entropic index , 2001, cond-mat/0110046.

[56]  H. Suyari Nonextensive entropies derived from form invariance of pseudoadditivity. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  L. I,et al.  Defects and particle motions in the nonuniform melting of a two-dimensional Coulomb cluster. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  R. Toral On the definition of physical temperature and pressure for nonextensive thermostatistics , 2001, cond-mat/0106060.

[59]  L. Zelenyi,et al.  Functional background of the Tsallis entropy: "coarse-grained" systems and "kappa" distribution functions , 2000 .

[60]  S. Abe General pseudoadditivity of composable entropy prescribed by the existence of equilibrium. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  A. Plastino,et al.  Thermodynamics’ zeroth law in a nonextensive scenario , 2000, cond-mat/0004448.

[62]  Sumiyoshi Abe,et al.  Correlation induced by Tsallis’ nonextensivity , 1999 .

[63]  Funabashi,et al.  Implications of Form Invariance to the Structure of Nonextensive Entropies , 1999, quant-ph/9904029.

[64]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[65]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[66]  S. Elaydi An introduction to difference equations , 1995 .

[67]  D. Hamilton,et al.  The relationship between kappa and temperature in energetic ion spectra at Jupiter , 1995 .

[68]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[69]  C. J. Adkins An introduction to thermal physics , 1987 .

[70]  S. Olbert Summary of Experimental Results from M.I.T. Detector on IMP-1 , 1969 .

[71]  V. Vasyliūnas,et al.  A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. , 1968 .

[72]  Interdisciplinary Applications , 2019, Hume's Problem Solved.

[73]  Yikun Zhang,et al.  A Mechanical Theory of Heat , 2003 .

[74]  D. Jou,et al.  Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics , 1997 .

[75]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[76]  M. W. Zemansky,et al.  Heat and thermodynamics : an intermediate textbook , 1981 .

[77]  J. H. Binsack,et al.  Plasma studies with the IMP-2 satellite , 1966 .

[78]  H. Tetrode Die chemische Konstante der Gase und das elementare Wirkungsquantum , 1912 .

[79]  O. Sackur Die Anwendung der kinetischen Theorie der Gase auf chemische Probleme , 1911 .