Control aspects of quantum computing using pure and mixed states

Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

[1]  S. J. Glaser,et al.  Optimal control of circuit quantum electrodynamics in one and two dimensions , 2009, 0911.4657.

[2]  A. G. Butkovskii,et al.  The controllability of quantum objects , 1980 .

[3]  Quantum logic via optimal control in holographic dipole traps , 2005, quant-ph/0503180.

[4]  Navin Khaneja,et al.  Optimal Control Methods in NMR Spectroscopy , 2010 .

[5]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[6]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[7]  Louis H. Kauffman,et al.  Spin networks and anyonic topological computing , 2006, SPIE Defense + Commercial Sensing.

[8]  Emanuel Knill,et al.  The quantum query complexity of the hidden subgroup problem is polynomial , 2004, Inf. Process. Lett..

[9]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[10]  Sophie Schirmer,et al.  Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics , 2011, 1107.4358.

[11]  S. G. Schirmer,et al.  Implementation of fault-tolerant quantum logic gates via optimal control , 2009, 0907.1635.

[12]  D. Elliott Bilinear Control Systems: Matrices in Action , 2009 .

[13]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[15]  Pierre de Fouquieres,et al.  Implementing quantum gates by optimal control with doubly exponential convergence. , 2012, Physical review letters.

[16]  A. Wallraff,et al.  Quantum-control approach to realizing a Toffoli gate in circuit QED , 2011, 1108.3442.

[17]  The HLRB Cluster as Quantum CISC Compiler Matrix Methods and Applications for Advanced Quantum Control by Gradient-Flow Algorithms on Parallel Clusters , 2008 .

[18]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  J. Ignacio Cirac,et al.  Simulation of quantum dynamics with quantum optical systems , 2003, Quantum Inf. Comput..

[20]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[21]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Dorit Aharonov,et al.  The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.

[23]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[24]  V. Bergholm,et al.  How to Transfer between Arbitrary $n$-Qubit Quantum States by Coherent Control and Simplest Switchable Noise on a Single Qubit , 2012, 1206.4945.

[25]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[26]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[27]  Louis H. Kauffman,et al.  A 3-stranded quantum algorithm for the Jones Polynomial , 2007, SPIE Defense + Commercial Sensing.

[28]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[29]  Amr Fahmy,et al.  Nuclear-magnetic-resonance quantum calculations of the Jones polynomial. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[30]  N. Khaneja,et al.  Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity , 2005 .

[31]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[32]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[33]  S. Glaser,et al.  Quantum CISC Compilation by Optimal Control and Scalable Assembly of Complex Instruction Sets beyond Two-Qubit Gates , 2007, 0712.3227.

[34]  Gorjan Alagic,et al.  Approximating the Turaev-Viro Invariant of Mapping Tori is Complete for One Clean Qubit , 2011, TQC.

[35]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[36]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[37]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[38]  Pawel Wocjan,et al.  Estimating Jones and Homfly polynomials with one clean qubit , 2008, Quantum Inf. Comput..

[39]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[40]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[41]  Peirce,et al.  Optimal control of uncertain quantum systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[42]  Goong Chen,et al.  Mathematics of Quantum Computation , 2002 .

[43]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[44]  Louis H. Kauffman,et al.  Mathematics of Quantum Computation and Quantum Technology , 2007 .

[45]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[46]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[47]  D. Bruß,et al.  Lectures on Quantum Information , 2007 .

[48]  Herschel Rabitz,et al.  Optimal control of quantum non-Markovian dissipation: reduced Liouville-space theory. , 2004, The Journal of chemical physics.

[49]  R Laflamme,et al.  Experimental approximation of the Jones polynomial with one quantum bit. , 2009, Physical review letters.

[50]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[51]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[52]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[53]  N. Khaneja,et al.  Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.

[54]  William S. Levine,et al.  The Control Handbook , 2010 .

[55]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[56]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[57]  Robin K. Harris,et al.  Encyclopedia of nuclear magnetic resonance , 1996 .

[58]  Samson Abramsky,et al.  Temperley−Lieb algebra: From knot theory to logic and computation via quantum mechanics , 2009, 0910.2737.

[59]  W. Potz,et al.  Quantum optimal control theory and dynamic coupling in the spin-boson model , 2006, cond-mat/0602497.

[60]  D. Aharonov,et al.  Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .

[61]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[62]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[63]  M. Nielsen,et al.  Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.

[64]  A. G. Butkovskii,et al.  Control of Quantum-Mechanical Processes and Systems , 1990 .

[65]  Louis H. Kauffman,et al.  Topological quantum computing and the Jones polynomial , 2006, SPIE Defense + Commercial Sensing.

[66]  Tommaso Calarco,et al.  Colloquium: Trapped ions as quantum bits: Essential numerical tools , 2009, 0912.0196.

[67]  C. Wunderlich Quantum physics: Trapped ion set to quiver , 2010, Nature.

[68]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[69]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[70]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[71]  P. Zoller,et al.  Coherent control of trapped ions using off-resonant lasers (13 pages) , 2005 .

[72]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[73]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[74]  Temperley-Lieb Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics , 2007 .

[75]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[76]  Burkhard Luy,et al.  Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  David L. Elliott,et al.  Bilinear Control Systems , 2009 .

[78]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[79]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[80]  T. Schulte-Herbr Quantum CISC Compilation by Optimal Control and Scalable Assembly of Complex Instruction Sets beyond Two-Qubit Gates , 2008 .

[81]  Charles H. Bennett,et al.  Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.

[82]  F K Wilhelm,et al.  Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.

[83]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[84]  S. Glaser,et al.  Thermal equilibrium as an initial state for quantum computation by NMR , 2007, 0705.1676.

[85]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[86]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[87]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[88]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[89]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[90]  R. Feynman Simulating physics with computers , 1999 .

[91]  John M. Martinis,et al.  Superconducting Qubits , 2004 .

[92]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.