Control aspects of quantum computing using pure and mixed states
暂无分享,去创建一个
Amr Fahmy | Thomas Schulte-Herbrüggen | Navin Khaneja | Steffen J. Glaser | Raimund Marx | L. Kauffman | N. Khaneja | S. Glaser | T. Schulte-Herbrüggen | A. Fahmy | S. Lomonaco | R. Marx | Louis Kauffman | Samuel Lomonaco
[1] S. J. Glaser,et al. Optimal control of circuit quantum electrodynamics in one and two dimensions , 2009, 0911.4657.
[2] A. G. Butkovskii,et al. The controllability of quantum objects , 1980 .
[3] Quantum logic via optimal control in holographic dipole traps , 2005, quant-ph/0503180.
[4] Navin Khaneja,et al. Optimal Control Methods in NMR Spectroscopy , 2010 .
[5] Mikhail N. Vyalyi,et al. Classical and Quantum Computation , 2002, Graduate studies in mathematics.
[6] O. Astafiev,et al. Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.
[7] Louis H. Kauffman,et al. Spin networks and anyonic topological computing , 2006, SPIE Defense + Commercial Sensing.
[8] Emanuel Knill,et al. The quantum query complexity of the hidden subgroup problem is polynomial , 2004, Inf. Process. Lett..
[9] Anthony J. G. Hey,et al. Feynman Lectures on Computation , 1996 .
[10] Sophie Schirmer,et al. Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics , 2011, 1107.4358.
[11] S. G. Schirmer,et al. Implementation of fault-tolerant quantum logic gates via optimal control , 2009, 0907.1635.
[12] D. Elliott. Bilinear Control Systems: Matrices in Action , 2009 .
[13] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[14] J. M. Gambetta,et al. Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.
[15] Pierre de Fouquieres,et al. Implementing quantum gates by optimal control with doubly exponential convergence. , 2012, Physical review letters.
[16] A. Wallraff,et al. Quantum-control approach to realizing a Toffoli gate in circuit QED , 2011, 1108.3442.
[18] R. Cleve,et al. Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] J. Ignacio Cirac,et al. Simulation of quantum dynamics with quantum optical systems , 2003, Quantum Inf. Comput..
[20] J. Clarke,et al. Superconducting quantum bits , 2008, Nature.
[21] Jonathan P Dowling,et al. Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[22] Dorit Aharonov,et al. The BQP-hardness of approximating the Jones polynomial , 2006, ArXiv.
[23] Y Zhang,et al. Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.
[24] V. Bergholm,et al. How to Transfer between Arbitrary $n$-Qubit Quantum States by Coherent Control and Simplest Switchable Noise on a Single Qubit , 2012, 1206.4945.
[25] H. Rabitz,et al. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.
[26] R. Kosloff,et al. Optimal control theory for unitary transformations , 2003, quant-ph/0309011.
[27] Louis H. Kauffman,et al. A 3-stranded quantum algorithm for the Jones Polynomial , 2007, SPIE Defense + Commercial Sensing.
[28] D. D’Alessandro. Introduction to Quantum Control and Dynamics , 2007 .
[29] Amr Fahmy,et al. Nuclear-magnetic-resonance quantum calculations of the Jones polynomial. , 2010, Physical review. A, Atomic, molecular, and optical physics.
[30] N. Khaneja,et al. Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity , 2005 .
[31] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[32] V. Bergholm,et al. Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.
[33] S. Glaser,et al. Quantum CISC Compilation by Optimal Control and Scalable Assembly of Complex Instruction Sets beyond Two-Qubit Gates , 2007, 0712.3227.
[34] Gorjan Alagic,et al. Approximating the Turaev-Viro Invariant of Mapping Tori is Complete for One Clean Qubit , 2011, TQC.
[35] Peter W. Shor,et al. Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..
[36] M. Lavagna. Quantum Phase Transitions , 2001, cond-mat/0102119.
[37] R. Blatt,et al. Entangled states of trapped atomic ions , 2008, Nature.
[38] Pawel Wocjan,et al. Estimating Jones and Homfly polynomials with one clean qubit , 2008, Quantum Inf. Comput..
[39] E. Knill. Quantum computing with realistically noisy devices , 2005, Nature.
[40] Timo O. Reiss,et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.
[41] Peirce,et al. Optimal control of uncertain quantum systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[42] Goong Chen,et al. Mathematics of Quantum Computation , 2002 .
[43] Victor M. Becerra,et al. Optimal control , 2008, Scholarpedia.
[44] Louis H. Kauffman,et al. Mathematics of Quantum Computation and Quantum Technology , 2007 .
[45] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[46] L. DiCarlo,et al. Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.
[47] D. Bruß,et al. Lectures on Quantum Information , 2007 .
[48] Herschel Rabitz,et al. Optimal control of quantum non-Markovian dissipation: reduced Liouville-space theory. , 2004, The Journal of chemical physics.
[49] R Laflamme,et al. Experimental approximation of the Jones polynomial with one quantum bit. , 2009, Physical review letters.
[50] K. B. Whaley,et al. Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.
[51] Marco Barbieri,et al. Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .
[52] Kaveh Khodjasteh,et al. Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.
[53] N. Khaneja,et al. Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.
[54] William S. Levine,et al. The Control Handbook , 2010 .
[55] R. Jozsa. Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[56] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[57] Robin K. Harris,et al. Encyclopedia of nuclear magnetic resonance , 1996 .
[58] Samson Abramsky,et al. Temperley−Lieb algebra: From knot theory to logic and computation via quantum mechanics , 2009, 0910.2737.
[59] W. Potz,et al. Quantum optimal control theory and dynamic coupling in the spin-boson model , 2006, cond-mat/0602497.
[60] D. Aharonov,et al. Polynomial Quantum algorithms for additive approximations of the Potts model and other points of the Tutte plane Preliminary Version , 2008 .
[61] Kaveh Khodjasteh,et al. Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.
[62] Dorit Aharonov,et al. A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.
[63] M. Nielsen,et al. Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.
[64] A. G. Butkovskii,et al. Control of Quantum-Mechanical Processes and Systems , 1990 .
[65] Louis H. Kauffman,et al. Topological quantum computing and the Jones polynomial , 2006, SPIE Defense + Commercial Sensing.
[66] Tommaso Calarco,et al. Colloquium: Trapped ions as quantum bits: Essential numerical tools , 2009, 0912.0196.
[67] C. Wunderlich. Quantum physics: Trapped ion set to quiver , 2010, Nature.
[68] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[69] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[70] J J García-Ripoll,et al. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.
[71] P. Zoller,et al. Coherent control of trapped ions using off-resonant lasers (13 pages) , 2005 .
[72] T. Hänsch,et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.
[73] Austin G. Fowler,et al. Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.
[74] Temperley-Lieb. Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics , 2007 .
[75] Stuart A. Rice,et al. Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .
[76] Burkhard Luy,et al. Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[77] David L. Elliott,et al. Bilinear Control Systems , 2009 .
[78] C. Monroe,et al. Quantum dynamics of single trapped ions , 2003 .
[79] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[80] T. Schulte-Herbr. Quantum CISC Compilation by Optimal Control and Scalable Assembly of Complex Instruction Sets beyond Two-Qubit Gates , 2008 .
[81] Charles H. Bennett,et al. Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.
[82] F K Wilhelm,et al. Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.
[83] P. Zanardi,et al. Noiseless Quantum Codes , 1997, quant-ph/9705044.
[84] S. Glaser,et al. Thermal equilibrium as an initial state for quantum computation by NMR , 2007, 0705.1676.
[85] Erik Lucero,et al. Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.
[86] M. Johanning,et al. Quantum simulations with cold trapped ions , 2009, 0905.0118.
[87] Claus Kiefer,et al. Quantum Measurement and Control , 2010 .
[88] A. Gruslys,et al. Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.
[89] Marcus P. da Silva,et al. Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.
[90] R. Feynman. Simulating physics with computers , 1999 .
[91] John M. Martinis,et al. Superconducting Qubits , 2004 .
[92] J. Cirac,et al. Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.