Reconfigurable Physical Reservoir in GaN/α-In2Se3 HEMTs Enabled by Out-of-Plane Local Polarization of Ferroelectric 2D Layer.

Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal-oxide-semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-In2Se3 ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-In2Se3 provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG). Moreover, the semiconducting α-In2Se3 features a steep subthreshold slope with a high ON/OFF ratio (∼1010). The self-aligned α-In2Se3 layer with the gate electrode suppresses the in-plane polarization while promoting the out-of-plane (OOP) polarization of α-In2Se3, resulting in a steep subthreshold slope (10 mV/dec) and creating a large hysteresis (2 V). Furthermore, based on the short-term plasticity (STP) characteristics of the fabricated ferroelectric HEMT, we demonstrated reservoir computing (RC) for image classification. We believe that the ferroelectric GaN/α-In2Se3 HEMT can provide a viable pathway toward ultrafast neuromorphic computing.

[1]  Huaqiang Wu,et al.  A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing , 2022, Nature Electronics.

[2]  Xinke Liu,et al.  Heteroepitaxy of Hf0.5Zr0.5O2 ferroelectric gate layer on AlGaN/GaN towards normally-off HEMTs , 2022, Applied Surface Science.

[3]  G. Yoo,et al.  Reconfigurable Radio‐Frequency High‐Electron Mobility Transistors via Ferroelectric‐Based Gallium Nitride Heterostructure , 2022, Advanced Electronic Materials.

[4]  Sungjoo Lee,et al.  Two-Dimensional CIPS-InSe van der Waal Heterostructure Ferroelectric Field Effect Transistor for Nonvolatile Memory Applications. , 2022, ACS nano.

[5]  Yuchao Yang,et al.  Multilayer Reservoir Computing Based on Ferroelectric α‐In2Se3 for Hierarchical Information Processing , 2022, Advanced materials.

[6]  Hyoungsub Kim,et al.  Ferroelectric switching in GeTe through rotation of lone-pair electrons by Electric field-driven phase transition , 2021 .

[7]  G. Yoo,et al.  Ferroelectric α‐In2Se3 Wrapped‐Gate β‐Ga2O3 Field‐Effect Transistors for Dynamic Threshold Voltage Control , 2021, Advanced Electronic Materials.

[8]  P. Ye,et al.  Asymmetric Metal/α-In2Se3/Si Crossbar Ferroelectric Semiconductor Junction. , 2021, ACS nano.

[9]  L. You,et al.  Van der Waals engineering of ferroelectric heterostructures for long-retention memory , 2021, Nature Communications.

[10]  David-Wei Zhang,et al.  Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing , 2020, Nature Communications.

[11]  S. Rajan,et al.  Demonstration of Wide Bandgap AlGaN/GaN Negative‐Capacitance High‐Electron‐Mobility Transistors (NC‐HEMTs) Using Barium Titanate Ferroelectric Gates , 2020, Advanced Electronic Materials.

[12]  Jing Guo,et al.  High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation , 2020 .

[13]  J. Xiang,et al.  Orthogonal Electric Control of the Out‐Of‐Plane Field‐Effect in 2D Ferroelectric α‐In2Se3 , 2020, Advanced Electronic Materials.

[14]  E. Eleftheriou,et al.  Memory devices and applications for in-memory computing , 2020, Nature Nanotechnology.

[15]  Kang L. Wang,et al.  Resistive switching materials for information processing , 2020, Nature Reviews Materials.

[16]  K. Banerjee,et al.  Is negative capacitance FET a steep-slope logic switch? , 2020, Nature Communications.

[17]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[18]  Y. Hao,et al.  Hetero-integration of quasi two-dimensional PbZr0.2Ti0.8O3 on AlGaN/GaN HEMT and non-volatile modulation of two-dimensional electron gas , 2019, Applied Physics Letters.

[19]  Lu You,et al.  Van der Waals negative capacitance transistors , 2019, Nature Communications.

[20]  G. Gelinck,et al.  Depolarization of multidomain ferroelectric materials , 2019, Nature Communications.

[21]  Jr-hau He,et al.  Gate‐Tunable and Multidirection‐Switchable Memristive Phenomena in a Van Der Waals Ferroelectric , 2019, Advanced materials.

[22]  P. Ye,et al.  A ferroelectric semiconductor field-effect transistor , 2018, Nature Electronics.

[23]  Jong-Ho Lee,et al.  A Split-Gate Positive Feedback Device With an Integrate-and-Fire Capability for a High-Density Low-Power Neuron Circuit , 2018, Front. Neurosci..

[24]  F. Manjón,et al.  Experimental and Theoretical Studies on α-In2Se3 at High Pressure. , 2018, Inorganic chemistry.

[25]  Hong Zhou,et al.  Steep-slope hysteresis-free negative capacitance MoS2 transistors , 2017, Nature Nanotechnology.

[26]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[27]  Meiyong Liao,et al.  A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures , 2013, Sensors.

[28]  S. Hosseini,et al.  Influence of La on electronic structure of α-Al2O3 high k-gate from first principles , 2005 .

[29]  Oliver Ambacher,et al.  Electron affinity of AlxGa1−xN(0001) surfaces , 2001 .

[30]  B. J. Baliga,et al.  Trends in power semiconductor devices , 1996 .