The Generation of EarthCARE L1 Test Data sets Using Atmospheric Model Data Sets

Atmospheric Model Data Sets David P. Donovan1, Pavlos Kollias2,3, Almudena Velázquez Blázquez4, and Gerd-Jan van Zadelhoff1 1Royal Netherlands Meteorological Institute (KNMI), de Bilt, the Netherlands 2Department of Atmospheric and Oceanic Sciences, McGill University, Quebec, Canada 3Division of Atmospheric Science, Stony Brook University, Stony Brook, NY, USA 4Royal Meteorological Institute of Belgium (RIMB), Brussels, Belgium Correspondence: D.P. Donovan (Donovan@knmi.nl)

[1]  Shannon L. Mason,et al.  HETEAC – the Hybrid End-To-End Aerosol Classification model for EarthCARE , 2023, Atmospheric Measurement Techniques.

[2]  P. Kollias,et al.  Processing reflectivity and Doppler velocity from EarthCARE's cloud-profiling radar: the C-FMR, C-CD and C-APC products , 2023, Atmospheric Measurement Techniques.

[3]  P. Kollias,et al.  Mind the Gap - Part 3: Doppler Velocity Measurements From Space , 2022, Frontiers in Remote Sensing.

[4]  T. Kanitz,et al.  ATmospheric LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space Agency Instrument That Will Measure Aerosols and Thin Clouds in the Atmosphere , 2021, Atmosphere.

[5]  P. Kollias,et al.  Mind the gap – Part 1: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars , 2020 .

[6]  Mark Chang,et al.  Overview of the EarthCARE multi-spectral imager and results from the development of the MSI engineering model , 2019, International Conference on Space Optics — ICSO 2012.

[7]  H. Barker,et al.  Accelerating radiative transfer calculations for high‐resolution atmospheric models , 2019, Quarterly Journal of the Royal Meteorological Society.

[8]  Henk Eskes,et al.  The CAMS reanalysis of atmospheric composition , 2018, Atmospheric Chemistry and Physics.

[9]  Yongxiang Hu,et al.  Spaceborne Lidar in the Study of Marine Systems. , 2018, Annual review of marine science.

[10]  Arnaud Hélière,et al.  ATLID, ESA Atmospheric LIDAR Developement Status , 2016 .

[11]  David L. Mitchell,et al.  Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing , 2015 .

[12]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[13]  Ping Yang,et al.  Backscattering peak of ice cloud particles. , 2015, Optics express.

[14]  Knut Stamnes,et al.  Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: Upgrades of the DISORT computational tool , 2015 .

[15]  Knut Stamnes,et al.  A global survey of cloud overlap based on CALIPSO and CloudSat measurements , 2015 .

[16]  Bryan A. Baum,et al.  Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm , 2014 .

[17]  Eva Borbas,et al.  Land surface VIS/NIR BRDF atlas for RTTOV‐11: model and validation against SEVIRI land SAF albedo product , 2014 .

[18]  D. P. Donovan,et al.  A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties , 2014 .

[19]  Simone Tanelli,et al.  Evaluation of EarthCARE Cloud Profiling Radar Doppler Velocity Measurements in Particle Sedimentation Regimes , 2014 .

[20]  Yongxiang Hu,et al.  Analysis of Water Vapor Correction for CloudSat W-Band Radar , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[21]  André Hollstein,et al.  Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique , 2012 .

[22]  Clemens Simmer,et al.  Multiple-scattering in radar systems: A review , 2010 .

[23]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Steven Platnick,et al.  Northern Hemisphere five-year average (2000-2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products , 2007 .

[25]  Pavlos Kollias,et al.  Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research , 2007 .

[26]  Andrew J. Heymsfield,et al.  Refinements in the Treatment of Ice Particle Terminal Velocities, Highlighting Aggregates , 2005 .

[27]  Thomas C. Grenfell,et al.  Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates , 2003 .

[28]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[29]  Richard B Miles,et al.  Coherent Rayleigh-Brillouin scattering. , 2002, Physical review letters.

[30]  Frank Fell,et al.  Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method , 2001 .

[31]  Walter R. Lempert,et al.  Laser Rayleigh scattering , 2001 .

[32]  E. Clothiaux,et al.  The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. , 1999 .

[33]  P. Rosenkranz Water vapor microwave continuum absorption: A comparison of measurements and models , 1998 .

[34]  D. Zrnic,et al.  Spectral Moment Estimates from Correlated Pulse Pairs , 1977, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Dusan S. Zrnic,et al.  Simulation of Weatherlike Doppler Spectra and Signals , 1975 .

[36]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[37]  Joseph A. Eichholz,et al.  Approximation , 2019, An Introduction to Computational Science.

[38]  S. Kneifel,et al.  Calculating the millimetre‐wave scattering phase function of snowflakes using the self‐similar Rayleigh–Gans Approximation , 2017 .

[39]  Nadine Gottschalk,et al.  Fundamentals Of Photonics , 2016 .

[40]  Liu Xinwu This is How the Discussion Started , 1981 .