Posterior contraction in sparse Bayesian factor models for massive covariance matrices
暂无分享,去创建一个
Debdeep Pati | Natesh S. Pillai | David Dunson | Anirban Bhattacharya | N. Pillai | D. Dunson | A. Bhattacharya | D. Pati
[1] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[2] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[3] S Y Lee,et al. Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. , 2001, The British journal of mathematical and statistical psychology.
[4] E. Fama,et al. The Cross‐Section of Expected Stock Returns , 1992 .
[5] Horst Alzer,et al. On some inequalities for the incomplete gamma function , 1997, Math. Comput..
[6] Dominique Bontemps,et al. Bernstein von Mises Theorems for Gaussian Regression with increasing number of regressors , 2010, 1009.1370.
[7] A. V. D. Vaart,et al. Adaptive Bayesian density estimation with location-scale mixtures , 2010 .
[8] A. W. Vaart,et al. Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.
[9] Wenxin Jiang. Bayesian variable selection for high dimensional generalized linear models : Convergence rates of the fitted densities , 2007, 0710.3458.
[10] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[11] F. Dias,et al. Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .
[12] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[13] Weidong Liu,et al. Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.
[14] J. Bai,et al. Inferential Theory for Factor Models of Large Dimensions , 2003 .
[15] Matthew West,et al. Bayesian factor regression models in the''large p , 2003 .
[16] E. Fama,et al. Common risk factors in the returns on stocks and bonds , 1993 .
[17] James G. Scott,et al. Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .
[18] L. Mirsky. A trace inequality of John von Neumann , 1975 .
[19] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[20] Lawrence Carin,et al. Negative Binomial Process Count and Mixture Modeling. , 2012, IEEE transactions on pattern analysis and machine intelligence.
[21] Torben Hagerup,et al. A Guided Tour of Chernoff Bounds , 1990, Inf. Process. Lett..
[22] Bin Yu. Assouad, Fano, and Le Cam , 1997 .
[23] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[24] Olivier Ledoit,et al. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .
[25] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[26] M. Pourahmadi,et al. BANDING SAMPLE AUTOCOVARIANCE MATRICES OF STATIONARY PROCESSES , 2009 .
[27] F. Bunea,et al. On the sample covariance matrix estimator of reduced effective rank population matrices, with applications to fPCA , 2012, 1212.5321.
[28] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[29] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[30] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[31] Kolyan Ray,et al. Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.
[32] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[33] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[34] S. Ross. The arbitrage theory of capital asset pricing , 1976 .
[35] Adam J. Rothman,et al. Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.
[36] Jianqing Fan,et al. High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.
[37] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[38] S. Ghosal. Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity , 2000 .
[39] Richard Nickl,et al. Rates of contraction for posterior distributions in Lr-metrics, 1 ≤ r ≤ ∞ , 2011, 1203.2043.
[40] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[41] E. Belitser,et al. Adaptive Bayesian inference on the mean of an infinite-dimensional normal distribution , 2003 .
[42] Jianqing Fan,et al. High Dimensional Covariance Matrix Estimation in Approximate Factor Models , 2011, Annals of statistics.
[43] Stan Lipovetsky,et al. Latent Variable Models and Factor Analysis , 2001, Technometrics.
[44] Clifford Lam,et al. Factor modeling for high-dimensional time series: inference for the number of factors , 2012, 1206.0613.
[45] S. Ross. THE CAPITAL ASSET PRICING MODEL (CAPM), SHORT‐SALE RESTRICTIONS AND RELATED ISSUES , 1977 .
[46] G. Casella,et al. The Bayesian Lasso , 2008 .
[47] T. Bengtsson,et al. Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .
[48] Carlos M. Carvalho,et al. Sparse Statistical Modelling in Gene Expression Genomics , 2006 .
[49] Subhashis Ghosal,et al. Asymptotic normality of posterior distributions in high-dimensional linear models , 1999 .
[50] M. Pourahmadi,et al. Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .
[51] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[52] Chris Hans. Elastic Net Regression Modeling With the Orthant Normal Prior , 2011 .
[53] James G. Scott,et al. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.
[54] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[55] Robb J. Muirhead,et al. Developments in Eigenvalue Estimation , 1987 .
[56] Harrison H. Zhou,et al. OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.
[57] B. Muthén,et al. A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm , 1998 .
[58] A. V. D. Vaart,et al. Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences , 2012, 1211.1197.
[59] I. Johnstone. Chi-square oracle inequalities , 2000 .
[60] M. West,et al. High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics , 2008, Journal of the American Statistical Association.
[61] Jianqing Fan,et al. Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[62] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .