Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis

[1]  N. Saini,et al.  miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis , 2013, Cell Death and Disease.

[2]  J. Hardwick,et al.  Cholesterol metabolism and colorectal cancers. , 2012, Current opinion in pharmacology.

[3]  B. Ghosh,et al.  DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach , 2012, Cell Death and Disease.

[4]  Shiyong Wu,et al.  The Role of Cholesterol in UV Light B‐induced Apoptosis † , 2012, Photochemistry and photobiology.

[5]  Feng Zhang,et al.  Dysregulated lipid metabolism in cancer. , 2012, World journal of biological chemistry.

[6]  M. Grant,et al.  Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes , 2012, Diabetes.

[7]  K S Kosik,et al.  Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases , 2012, Oncogene.

[8]  Jing Ye,et al.  Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis , 2012, Protein & Cell.

[9]  A. Reiss,et al.  Regulation of Cerebral Cholesterol Metabolism in Alzheimer Disease , 2012, Journal of Investigative Medicine.

[10]  L. Goedeke,et al.  Regulation of cholesterol homeostasis , 2012, Cellular and Molecular Life Sciences.

[11]  Y. Mei,et al.  Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREB‐dependent up‐regulation of Kv2.1 , 2012, Journal of neurochemistry.

[12]  N. Saini,et al.  Small Interfering RNA against Transcription Factor STAT6 Leads to Increased Cholesterol Synthesis in Lung Cancer Cell Lines , 2011, PloS one.

[13]  A. Dávalos,et al.  MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1 , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[14]  M. Yeh,et al.  Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. , 2011, Gastroenterology.

[15]  B. Lacombe,et al.  The Hedgehog Receptor Patched Is Involved in Cholesterol Transport , 2011, PloS one.

[16]  N. Saini,et al.  Gene expression profiling indicate role of ER stress in miR-23a~27a~24-2 cluster induced apoptosis in HEK293T cells , 2011, RNA biology.

[17]  S. H. Najafi-Shoushtari MicroRNAs in Cardiometabolic Disease , 2011, Current atherosclerosis reports.

[18]  N. Saini,et al.  MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells , 2011, Cellular and Molecular Life Sciences.

[19]  M. A. Khan,et al.  Association of lipid metabolism with ovarian cancer. , 2010, Current oncology.

[20]  F. Damiano,et al.  Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site. , 2010, The Biochemical journal.

[21]  P. Puigserver,et al.  Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. , 2010, Genes & development.

[22]  K. Moore,et al.  MiR-33 Contributes to the Regulation of Cholesterol Homeostasis , 2010, Science.

[23]  D. Iliopoulos,et al.  MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism[S] , 2010, Journal of Lipid Research.

[24]  Qing Xu,et al.  Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. , 2009, Cell metabolism.

[25]  R. Collins,et al.  Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies , 2009, The Lancet.

[26]  Y. Suárez,et al.  MicroRNAs as novel regulators of angiogenesis. , 2009, Circulation research.

[27]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[28]  Yi Wen Kong,et al.  How do microRNAs regulate gene expression? , 2008, Biochemical Society transactions.

[29]  M. Zwahlen,et al.  Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies , 2008, The Lancet.

[30]  V. Beral,et al.  Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study , 2007, BMJ : British Medical Journal.

[31]  Tsung-Cheng Chang,et al.  microRNAs in vertebrate physiology and human disease. , 2007, Annual review of genomics and human genetics.

[32]  W. C. Hallows,et al.  Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases , 2006, Proceedings of the National Academy of Sciences.

[33]  M. Stoffel,et al.  MicroRNAs: a new class of regulatory genes affecting metabolism. , 2006, Cell metabolism.

[34]  M. Hager,et al.  The role of cholesterol in prostate cancer , 2006, Current opinion in clinical nutrition and metabolic care.

[35]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[36]  Peter Tontonoz,et al.  Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia. , 2006, Annual review of medicine.

[37]  Yibin Wang,et al.  Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor , 2005, The Journal of cell biology.

[38]  Phillip D. Zamore,et al.  Ribo-gnome: The Big World of Small RNAs , 2005, Science.

[39]  D. Gómez-Coronado,et al.  Effects of distal cholesterol biosynthesis inhibitors on cell proliferation and cell cycle progression Published, JLR Papers in Press, February 1, 2005. DOI 10.1194/jlr.M400407-JLR200 , 2005, Journal of Lipid Research.

[40]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[41]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[42]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[43]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[44]  J. Breslow,et al.  Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mices⃞s⃞ The online version of this article (available at http://www.jlr.org) contains one supplemental table. Published, JLR Papers in Press, August 1, 2003. DOI 10.1194/jlr.M300203-JLR200 , 2003, Journal of Lipid Research.

[45]  George Kuriakose,et al.  The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages , 2003, Nature Cell Biology.

[46]  Joseph L Goldstein,et al.  SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. , 2002, The Journal of clinical investigation.

[47]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[48]  H. Shimano Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. , 2001, Progress in lipid research.

[49]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[50]  Christopher K. Glass,et al.  Atherosclerosis The Road Ahead , 2001, Cell.

[51]  D. Mangelsdorf,et al.  Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. , 2000, Science.

[52]  A. Okamoto,et al.  Transcriptional Regulation of the ATP Citrate-lyase Gene by Sterol Regulatory Element-binding Proteins* , 2000, The Journal of Biological Chemistry.

[53]  R. Hammer,et al.  Blunted feedback suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP(D443N). , 1998, The Journal of clinical investigation.

[54]  R. Hammer,et al.  Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. , 1998, The Journal of clinical investigation.

[55]  R. Hammer,et al.  Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. , 1997, The Journal of clinical investigation.

[56]  R. Hammer,et al.  Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. , 1996, The Journal of clinical investigation.

[57]  C. Dotti,et al.  Peripheral cholesterol, metabolic disorders and Alzheimer's disease. , 2012, Frontiers in bioscience.

[58]  Wei Liu,et al.  MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a , 2008, Journal of Molecular Medicine.

[59]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[60]  S. Broitman,et al.  Cholesterol metabolism and colon cancer. , 1993, Progress in food & nutrition science.

[61]  LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells , 2022 .