Low-dimensional representation of error covariance
暂无分享,去创建一个
Michael K. Tippett | Ricardo Todling | Dan Marchesin | Stephen E. Cohn | M. Tippett | R. Todling | S. Cohn | D. Marchesin
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Alexey Kaplan,et al. Mapping tropical Pacific sea level : Data assimilation via a reduced state space Kalman filter , 1996 .
[3] B. Farrell. Transient Growth of Damped Baroclinic Waves , 1985 .
[4] Brian F. Farrell,et al. Optimal Excitation of Baroclinic Waves , 1989 .
[5] B. Goswami,et al. Predictability of a coupled ocean-atmosphere model , 1991 .
[6] J. Barkmeijer,et al. Singular vectors and estimates of the analysis‐error covariance metric , 1998 .
[7] S. Cohn,et al. Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .
[8] Michael Ghil,et al. Tracking Atmospheric Instabilities with the Kalman Filter. Part II: Two-Layer Results , 1996 .
[9] Brian F. Farrell,et al. Stochastic Dynamics of Baroclinic Waves , 1993 .
[10] S. Cohn,et al. Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .
[11] Dick Dee,et al. Maximum-Likelihood Estimation of Forecast and Observation Error Covariance Parameters. Part I: Methodology , 1999 .
[12] Stephen E. Cohn,et al. An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .
[13] D. Blake,et al. The compatibility between aircraft and ground-based air quality measurements , 1994 .
[14] S. Cohn,et al. An Introduction to Estimation Theory , 1997 .
[15] Gene H. Golub,et al. Matrix computations , 1983 .
[16] Dick Dee,et al. Maximum-Likelihood Estimation of Forecast and Observation Error Covariance Parameters. Part II: Applications , 1999 .
[17] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[18] P. Courtier,et al. The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .
[19] Lippincott Williams Wilkins,et al. Part I , 1997, Neurology.
[20] Robert Vautard,et al. Four-dimensional variational assimilation and predictability in a quasi-geostrophic model , 1998 .
[21] P. Courtier,et al. The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .
[22] Eugenia Kalnay,et al. Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .
[23] Istvan Szunyogh,et al. A comparison of Lyapunov and optimal vectors in a low-resolution GCM , 1997 .
[24] Michael Ghil,et al. Tracking Atmospheric Instabilities with the Kalman Filter. Part 1: Methodology and One-Layer Resultst , 1994 .
[25] Dick Dee,et al. Observability of discretized partial differential equations , 1988 .
[26] Jeffrey S. Whitaker,et al. A Linear Theory of Extratropical Synoptic Eddy Statistics , 1998 .
[27] Michael K. Tippett,et al. Upper bounds for the solution of the discrete algebraic Lyapunov equation , 1999, Autom..
[28] Petros,et al. Generalized Stability Theory . Part I : Autonomous Operators , 2022 .
[29] R. Todling,et al. Approximate Data Assimilation Schemes for Stable and Unstable Dynamics , 1996 .
[30] Takehiro Mori,et al. Upper and lower bounds for the solution to the discrete Lyapunov matrix equation , 1982 .
[31] F. Molteni,et al. The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .
[32] Roberto Buizza,et al. The impact of increased resolution on predictability studies with singular vectors , 1997 .
[33] Michael K. Tippett,et al. Bounds for the solution of the discrete algebraic Lyapunov equation , 1998, Autom..
[34] P. L. Houtekamer,et al. A System Simulation Approach to Ensemble Prediction , 1996 .
[35] M. Cane,et al. On the prediction of ENSO: a study with a low-order Markov model , 1994 .
[36] Herschel L. Mitchell,et al. Discretization error and signal/error correlation in atmospheric data assimilation , 1997 .
[37] Anne E. Trefethen,et al. Hydrodynamic Stability Without Eigenvalues , 1993, Science.
[38] Michael K. Tippett,et al. Conditioning of the Stable, Discrete-Time Lyapunov Operator , 2000, SIAM J. Matrix Anal. Appl..
[39] Michael K. Tippett,et al. Bounds for solutions of the discrete algebraic Lyapunov equation , 1999, IEEE Trans. Autom. Control..
[40] Roger Daley,et al. Spectral Characteristics of Kalman Filter Systems for Atmospheric Data Assimilation , 1993 .
[41] Roberto Buizza,et al. The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .
[42] Brian F. Farrell,et al. Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .
[43] Dick Dee,et al. Ooce Note Series on Global Modeling and Data Assimilation Maximum-likelihood Estimation of Forecast and Observation Error Covariance Parameters , 2022 .
[44] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[45] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[46] C. V. L. Charlier,et al. Periodic Orbits , 1898, Nature.
[47] F. Smithies. A HILBERT SPACE PROBLEM BOOK , 1968 .
[48] M. Verlaan,et al. Tidal flow forecasting using reduced rank square root filters , 1997 .
[49] Arlindo da Silva,et al. Data assimilation in the presence of forecast bias , 1998 .
[50] Roberto Buizza,et al. Sensitivity Analysis of Forecast Errors and the Construction of Optimal Perturbations Using Singular Vectors , 1998 .
[51] Herschel L. Mitchell,et al. Discretization error and signal/error correlation in atmospheric data assimilation : (I). All scales resolved , 1997 .
[52] R. Daley. Forecast-error statistics for homogeneous and inhomogeneous observation networks , 1992 .
[53] Anna Trevisan,et al. Periodic Orbits, Lyapunov Vectors, and Singular Vectors in the Lorenz System , 1998 .