LbCas12-mediated multiplex gene editing and 2-fluoroadenine counter-selection in Phytophthora palmivora

CRISPR-Cas systems have moved forward genetic engineering in virtually any organism amenable to genetic modification. In particular, these systems have unlocked unprecedented possibilities to generate mutants in oomycetes, a group of filamentous microbes comprising over two hundred Phytophthora species, including the cacao killer Phytophthora palmivora. Here, we showcase multiplex gene editing in P. palmivora using LbCas12. We have developed a straightforward protocol to simultaneously knock out two genes encoding adenine phosphoribosyltransferase (APT), an essential enzyme of the purine salvage pathway. We show that APT knockouts (ΔPpATP1/2) are insensitive to 2-fluoroadenine (2-FA) and retain full virulence on Nicotiana benthamiana. We rely on zoospore electroporation using an all-in-one construct to facilitate the rapid editing of multiple genes. This work enhances the genetic toolbox for Phytophthora species and simplifies the exploration of gene function, laying the groundwork for future innovations aiming to tackle oomycete plant diseases.

[1]  V. Mahajan,et al.  Unleashing the potential of CRISPR multiplexing: Harnessing Cas12 and Cas13 for precise gene modulation in eye diseases , 2023, Vision Research.

[2]  J. Doudna,et al.  CRISPR technology: A decade of genome editing is only the beginning , 2023, Science.

[3]  S. Kawano,et al.  Genome editing using a DNA‐free clustered regularly interspaced short palindromic repeats‐Cas9 system in green seaweed Ulva prolifera , 2021, Phycological Research.

[4]  M. Sternberg,et al.  The AlphaFold Database of Protein Structures: A Biologist’s Guide , 2021, Journal of molecular biology.

[5]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[6]  Susana M. Coelho,et al.  Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. , 2021, The New phytologist.

[7]  Audrey M. V. Ah-Fong,et al.  A Cas12a‐based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor , 2021, Molecular plant pathology.

[8]  E. Jin,et al.  Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395 , 2021, International journal of molecular sciences.

[9]  M. Porteus,et al.  Metabolic engineering generates a transgene-free safety switch for cell therapy , 2020, Nature Biotechnology.

[10]  G. Montoya,et al.  CRISPR-Cas12a: Functional overview and applications , 2020, Biomedical journal.

[11]  S. Schornack,et al.  Hydrodynamic Shape Changes Underpin Nuclear Rerouting in Branched Hyphae of an Oomycete Pathogen , 2019, mBio.

[12]  Carlo C. Campa,et al.  Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts , 2019, Nature Methods.

[13]  Chase L. Beisel,et al.  Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis , 2019, Nature Communications.

[14]  F. Nogué,et al.  Efficient Editing of the Nuclear APT Reporter Gene in Chlamydomonas reinhardtii via Expression of a CRISPR-Cas9 Module , 2019, International journal of molecular sciences.

[15]  Tao Zhang,et al.  Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis , 2019, BMC Biology.

[16]  B. Tyler,et al.  Mutations in ORP1 Conferring Oxathiapiprolin Resistance Confirmed by Genome Editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae. , 2018, Phytopathology.

[17]  Qiong Wu,et al.  A Multiplex Genome Editing Method for Escherichia coli Based on CRISPR-Cas12a , 2018, Front. Microbiol..

[18]  F. Daboussi,et al.  One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing , 2018, Nature Communications.

[19]  James R. Rybarski,et al.  Kinetic basis for DNA target specificity of CRISPR-Cas12a , 2018, bioRxiv.

[20]  Maximilian Haeussler,et al.  CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens , 2018, Nucleic Acids Res..

[21]  Scott Bailey,et al.  Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a) , 2018, Proceedings of the National Academy of Sciences.

[22]  R. Sicher,et al.  The differential influence of temperature on Phytophthora megakarya and Phytophthora palmivora pod lesion expansion, mycelia growth, gene expression, and metabolite profiles , 2018 .

[23]  F. Govers,et al.  Attempts to implement CRISPR/Cas9 for genome editing in the oomycete Phytophthora infestans , 2018, bioRxiv.

[24]  A. Crozier,et al.  Purine salvage in plants. , 2018, Phytochemistry.

[25]  Dongliang L. Wu,et al.  A Phytophthora palmivora Extracellular Cystatin-Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya. , 2018, Molecular plant-microbe interactions : MPMI.

[26]  Jean-Marc Daran,et al.  FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae , 2017, Nucleic acids research.

[27]  Jian‐Kang Zhu,et al.  Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. , 2017, Molecular plant.

[28]  S. Schornack,et al.  Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors , 2017, BMC Biology.

[29]  David John Lary,et al.  Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms , 2017, Genome biology and evolution.

[30]  J. Gootenberg,et al.  Erratum: Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array , 2017, Nature Biotechnology.

[31]  D. Moreira,et al.  A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). , 2016, Molecular biology and evolution.

[32]  D. Schaefer,et al.  CRISPR‐Cas9‐mediated efficient directed mutagenesis and RAD51‐dependent and RAD51‐independent gene targeting in the moss Physcomitrella patens , 2016, Plant biotechnology journal.

[33]  T. Burdon,et al.  Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease , 2016, Scientific Reports.

[34]  D. Guest,et al.  Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. , 2016, Phytopathology.

[35]  Sergey A. Shmakov,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[36]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[37]  B. Tyler,et al.  Efficient disruption and replacement of an effector gene in the oomycete P hytophthora sojae using CRISPR/Cas9 , 2015, bioRxiv.

[38]  Steven B. Johnson,et al.  Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen. , 2015, Phytopathology.

[39]  M. Ojika,et al.  Establishment of the straightforward electro-transformation system for Phytophthora infestans and its comparison with the improved PEG/CaCl₂ transformation. , 2015, Journal of microbiological methods.

[40]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[41]  Huimin Zhao,et al.  Transcription activator‐like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing , 2013, Biotechnology and bioengineering.

[42]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[43]  Niklaus J Grünwald,et al.  Emergence of the sudden oak death pathogen Phytophthora ramorum. , 2012, Trends in microbiology.

[44]  G. Beakes,et al.  The evolutionary phylogeny of the oomycete “fungi” , 2011, Protoplasma.

[45]  Kensuke Nakajima,et al.  Identification of the UMP Synthase Gene by Establishment of Uracil Auxotrophic Mutants and the Phenotypic Complementation System in the Marine Diatom Phaeodactylum tricornutum1[W][OA] , 2011, Plant Physiology.

[46]  E. Rebar,et al.  Genome editing with engineered zinc finger nucleases , 2010, Nature Reviews Genetics.

[47]  M. Coffey,et al.  First Report of Bud Rot Caused by Phytophthora palmivora on African Oil Palm in Colombia. , 2010, Plant disease.

[48]  M. Teichmann,et al.  The expanding RNA polymerase III transcriptome. , 2007, Trends in genetics : TIG.

[49]  P. West,et al.  Zoospore development in the oomycetes , 2007 .

[50]  F. Govers,et al.  A Phytophthora infestans G-Protein β Subunit Is Involved in Sporangium Formation , 2003, Eukaryotic Cell.

[51]  B. Moffatt,et al.  Male sterility associated with APRT deficiency in Arabidopsis thaliana results from a mutation in the gene APT1 , 1998, Molecular and General Genetics MGG.

[52]  Alexandro E. Trevino,et al.  Genome editing using Cas9 nickases. , 2014, Methods in enzymology.

[53]  M. Wickens,et al.  Identifying proteins that bind a known RNA sequence using the yeast three-hybrid system. , 2014, Methods in enzymology.

[54]  E. Huitema,et al.  A straightforward protocol for electro-transformation of Phytophthora capsici zoospores. , 2011, Methods in molecular biology.

[55]  W. Ko,et al.  A simple method for obtaining single-spore isolates of fungi , 1997 .

[56]  D. Schaff The adenine phosphoribosyltransferase (APRT) selectable marker system , 1994 .

[57]  P. A. Horgen,et al.  Protoplast formation and the visualization of nuclei in the eukaryotic microbe, Achlya. , 1978, Cytobios.