The coalescent and the genealogical process in geographically structured population

[1]  N. Takahata Gene genealogy in three related populations: consistency probability between gene and population trees. , 1989, Genetics.

[2]  N. Takahata,et al.  The coalescent in two partially isolated diffusion populations. , 1988, Genetical research.

[3]  N L Kaplan,et al.  The coalescent process in models with selection and recombination. , 1988, Genetics.

[4]  N L Kaplan,et al.  The coalescent process in models with selection. , 1988, Genetics.

[5]  S. Padmadisastra The genetic divergence of three populations , 1987 .

[6]  S. Ethier,et al.  The Infinitely-Many-Sites Model as a Measure-Valued Diffusion , 1987 .

[7]  J. T. Cox,et al.  Diffusive Clustering in the Two Dimensional Voter Model , 1986 .

[8]  T. Liggett Interacting Particle Systems , 1985 .

[9]  G. A. Watterson The genetic divergence of two populations , 1985 .

[10]  S. Tavaré,et al.  Line-of-descent and genealogical processes, and their applications in population genetics models. , 1984, Theoretical population biology.

[11]  G. A. Watterson Lines of descent and the coalescent , 1984 .

[12]  Peter Donnelly,et al.  The transient behaviour of the Moran model in population genetics , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  T. Nagylaki The robustness of neutral models of geographical variation , 1983 .

[14]  R. Griffiths The number of alleles and segregating sites in a sample from the infinite-alleles model , 1982, Advances in Applied Probability.

[15]  T. Shiga,et al.  Convergence to genetically uniform state in stepping stone models of population genetics , 1980, Journal of mathematical biology.

[16]  T. Nagylaki,et al.  The strong-migration limit in geographically structured populations , 1980, Journal of mathematical biology.

[17]  R. Griffiths,et al.  Lines of descent in the diffusion approximation of neutral Wright-Fisher models. , 1980, Theoretical population biology.

[18]  David Griffeath,et al.  Additive and Cancellative Interacting Particle Systems , 1979 .

[19]  Keith Gladstien,et al.  The Characteristic Values and Vectors for a Class of Stochastic Matrices Arising in Genetics , 1978 .

[20]  S. Sawyer Results for the Stepping Stone Model for Migration in Population Genetics , 1976 .

[21]  R. Hudson,et al.  A numerical method for calculating moments of coalescent times in finite populations with selection , 1989, Journal of mathematical biology.

[22]  P. Donnelly,et al.  The population genealogy of the infinitely-many neutral alleles model , 1987, Journal of mathematical biology.

[23]  R. Griffiths,et al.  Counting genealogical trees , 1987, Journal of mathematical biology.

[24]  S. Tavaré The birth process with immigration, and the genealogical structure of large populations , 1987, Journal of mathematical biology.

[25]  T. Nagylaki NEUTRAL MODELS OF GEOGRAPHICAL VARIATION , 1986 .

[26]  Peter Donnelly Dual processes and an invariance result for exchangeable models in population genetics , 1985, Journal of mathematical biology.

[27]  J. Kingman On the genealogy of large populations , 1982, Journal of Applied Probability.

[28]  T. Shiga Continuous time multi-allelic stepping stone models in population genetics , 1982 .

[29]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[30]  T. Shiga,et al.  An interacting system in population genetics , 1980 .

[31]  C. J-F,et al.  THE COALESCENT , 1980 .