Polyadic braid operators and higher braiding gates

A new kind of quantum gates, higher braiding gates, as matrix solutions of the polyadic braid equations (different from the generalized Yang–Baxter equations) is introduced. Such gates lead to another special multiqubit entanglement that can speed up key distribution and accelerate algorithms. Ternary braiding gates acting on three qubit states are studied in detail. We also consider exotic non-invertible gates, which can be related with qubit loss, and define partial identities (which can be orthogonal), partial unitarity, and partially bounded operators (which can be non-invertible). We define two classes of matrices, star and circle ones, such that the magic matrices (connected with the Cartan decomposition) belong to the star class. The general algebraic structure of the introduced classes is described in terms of semigroups, ternary and 5-ary groups and modules. The higher braid group and its representation by the higher braid operators are given. Finally, we show, that for each multiqubit state, there exist higher braiding gates that are not entangling, and the concrete conditions to be non-entangling are given for the obtained binary and ternary gates.

[1]  V. Drinfeld Quasi-Hopf Algebras and Knizhnik-Zamolodchikov Equations , 1989 .

[2]  Steven Duplij Higher Braid Groups and Regular Semigroups from Polyadic-Binary Correspondence , 2021 .

[3]  Samuel L. Braunstein,et al.  Multipartite entanglement , 2002 .

[4]  Zhenghan Wang,et al.  Qubit representations of the braid groups from generalized Yang–Baxter matrices , 2016, Quantum Inf. Process..

[5]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[6]  Pramod Padmanabhan,et al.  Local invariants of braiding quantum gates—associated link polynomials and entangling power , 2020, 2010.00270.

[7]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[8]  Andrew G. White,et al.  Entanglement-free certification of entangling gates , 2013, 1301.7110.

[9]  Louis H. Kauffman,et al.  Quantum entanglement and topological entanglement , 2002 .

[10]  QUANTUM R-MATRICES AS UNIVERSAL QUBIT GATES , 2020 .

[11]  Gorjan Alagic,et al.  Yang–Baxter operators need quantum entanglement to distinguish knots , 2015, 1507.05979.

[12]  Gorjan Alagic,et al.  Classical Simulation of Yang-Baxter Gates , 2014, Theory of Quantum Computation, Communication, and Cryptography.

[13]  Eric C. Rowell,et al.  Mathematics of Topological Quantum Computing , 2017, 1705.06206.

[14]  S. Duplij Ternary Hopf Algebras , 2003 .

[15]  Fumihiko Sugino,et al.  Generating W states with braiding operators , 2020, Quantum Inf. Comput..

[16]  László Barna Iantovics,et al.  On the Colored and the Set-Theoretical Yang-Baxter Equations , 2021, Axioms.

[17]  Navin Khaneja,et al.  Cartan decomposition of SU(2n) and control of spin systems , 2001 .

[18]  Martin Gennis,et al.  Explorations in Quantum Computing , 2001, Künstliche Intell..

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  L. Lambe,et al.  Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach , 1997 .

[21]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[22]  Louis H. Kauffman,et al.  Braiding operators are universal quantum gates , 2004, quant-ph/0401090.

[23]  Stephen S. Bullock,et al.  Canonical decompositions of n-qubit quantum computations and concurrence , 2004 .

[24]  Entangling power and local invariants of two-qubit gates , 2010, 1005.2467.

[26]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[27]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[28]  S. Mironov,et al.  Towards topological quantum computer , 2017, 1703.00431.

[29]  P. K. Aravind Borromean Entanglement of the GHZ State , 1997 .

[30]  V. M. Bukhshtaber The Yang-Baxter transformation , 1998 .

[31]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[32]  H. A. Dye Unitary Solutions to the Yang–Baxter Equation in Dimension Four , 2003, Quantum Inf. Process..

[33]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[34]  Yong Zhang,et al.  Extraspecial two-Groups, generalized Yang-Baxter equations and braiding quantum gates , 2007, Quantum Inf. Comput..

[35]  Stephen S. Bullock Note on the Khaneja Glaser decomposition , 2004, Quantum Inf. Comput..

[36]  Michael Epping,et al.  Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.

[37]  Wilhelm Dörnte Untersuchungen über einen verallgemeinerten Gruppenbegriff , 1929 .

[38]  Jarmo Hietarinta,et al.  Solving the two‐dimensional constant quantum Yang–Baxter equation , 1993 .

[39]  A. Sudbery On local invariants of pure three-qubit states , 2000, quant-ph/0001116.

[40]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[41]  M. Freedman,et al.  Topological Quantum Entanglement , 2014 .

[42]  C. Qiao,et al.  Robustness of 2 × N × M entangled states against qubit loss , 2021, Physics Letters A.

[43]  D. Braun,et al.  Quantum channel-estimation with particle loss: GHZ versus W states , 2016, 1608.06221.

[44]  L. Oeding,et al.  Learning algebraic models of quantum entanglement , 2019, Quantum Information Processing.

[45]  V. Drinfeld On some unsolved problems in quantum group theory , 1992 .

[46]  Rebecca Chen,et al.  Generalized Yang-Baxter Equations and Braiding Quantum Gates , 2011, 1108.5215.

[47]  Joy Christian Potentiality, Entanglement and Passion-at-a-Distance , 1999 .

[48]  A. Kitaev,et al.  Solutions to generalized Yang-Baxter equations via ribbon fusion categories , 2012, 1203.1063.

[49]  A. Veselov Yang–Baxter maps and integrable dynamics , 2002, math/0205335.

[50]  Thierry Bastin,et al.  Entanglement robustness against particle loss in multiqubit systems , 2018, Physical Review A.

[51]  Louis H. Kauffman,et al.  Topological aspects of quantum entanglement , 2016, Quantum Inf. Process..

[52]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[53]  S. Duplij Polyadic Hopf Algebras and Quantum Groups , 2018, 2.

[54]  Mikio Nakahara,et al.  Acceleration of quantum algorithms using three-qubit gates , 2003 .

[55]  Hyundong Shin,et al.  Entanglement-Free Parameter Estimation of Generalized Pauli Channels , 2021, Quantum.

[56]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.