暂无分享,去创建一个
[1] V. Drinfeld. Quasi-Hopf Algebras and Knizhnik-Zamolodchikov Equations , 1989 .
[2] Steven Duplij. Higher Braid Groups and Regular Semigroups from Polyadic-Binary Correspondence , 2021 .
[3] Samuel L. Braunstein,et al. Multipartite entanglement , 2002 .
[4] Zhenghan Wang,et al. Qubit representations of the braid groups from generalized Yang–Baxter matrices , 2016, Quantum Inf. Process..
[5] Raymond Laflamme,et al. An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..
[6] Pramod Padmanabhan,et al. Local invariants of braiding quantum gates—associated link polynomials and entangling power , 2020, 2010.00270.
[7] D. Berry,et al. Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.
[8] Andrew G. White,et al. Entanglement-free certification of entangling gates , 2013, 1301.7110.
[9] Louis H. Kauffman,et al. Quantum entanglement and topological entanglement , 2002 .
[10] QUANTUM R-MATRICES AS UNIVERSAL QUBIT GATES , 2020 .
[11] Gorjan Alagic,et al. Yang–Baxter operators need quantum entanglement to distinguish knots , 2015, 1507.05979.
[12] Gorjan Alagic,et al. Classical Simulation of Yang-Baxter Gates , 2014, Theory of Quantum Computation, Communication, and Cryptography.
[13] Eric C. Rowell,et al. Mathematics of Topological Quantum Computing , 2017, 1705.06206.
[14] S. Duplij. Ternary Hopf Algebras , 2003 .
[15] Fumihiko Sugino,et al. Generating W states with braiding operators , 2020, Quantum Inf. Comput..
[16] László Barna Iantovics,et al. On the Colored and the Set-Theoretical Yang-Baxter Equations , 2021, Axioms.
[17] Navin Khaneja,et al. Cartan decomposition of SU(2n) and control of spin systems , 2001 .
[18] Martin Gennis,et al. Explorations in Quantum Computing , 2001, Künstliche Intell..
[19] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[20] L. Lambe,et al. Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach , 1997 .
[21] V. Turaev. The Yang-Baxter equation and invariants of links , 1988 .
[22] Louis H. Kauffman,et al. Braiding operators are universal quantum gates , 2004, quant-ph/0401090.
[23] Stephen S. Bullock,et al. Canonical decompositions of n-qubit quantum computations and concurrence , 2004 .
[24] Entangling power and local invariants of two-qubit gates , 2010, 1005.2467.
[26] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[27] John Preskill,et al. Topological Quantum Computation , 1998, QCQC.
[28] S. Mironov,et al. Towards topological quantum computer , 2017, 1703.00431.
[29] P. K. Aravind. Borromean Entanglement of the GHZ State , 1997 .
[30] V. M. Bukhshtaber. The Yang-Baxter transformation , 1998 .
[31] S. Helgason. Differential Geometry and Symmetric Spaces , 1964 .
[32] H. A. Dye. Unitary Solutions to the Yang–Baxter Equation in Dimension Four , 2003, Quantum Inf. Process..
[33] S. Bartlett,et al. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.
[34] Yong Zhang,et al. Extraspecial two-Groups, generalized Yang-Baxter equations and braiding quantum gates , 2007, Quantum Inf. Comput..
[35] Stephen S. Bullock. Note on the Khaneja Glaser decomposition , 2004, Quantum Inf. Comput..
[36] Michael Epping,et al. Multi-partite entanglement can speed up quantum key distribution in networks , 2016, 1612.05585.
[37] Wilhelm Dörnte. Untersuchungen über einen verallgemeinerten Gruppenbegriff , 1929 .
[38] Jarmo Hietarinta,et al. Solving the two‐dimensional constant quantum Yang–Baxter equation , 1993 .
[39] A. Sudbery. On local invariants of pure three-qubit states , 2000, quant-ph/0001116.
[40] J. Cirac,et al. Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.
[41] M. Freedman,et al. Topological Quantum Entanglement , 2014 .
[42] C. Qiao,et al. Robustness of 2 × N × M entangled states against qubit loss , 2021, Physics Letters A.
[43] D. Braun,et al. Quantum channel-estimation with particle loss: GHZ versus W states , 2016, 1608.06221.
[44] L. Oeding,et al. Learning algebraic models of quantum entanglement , 2019, Quantum Information Processing.
[45] V. Drinfeld. On some unsolved problems in quantum group theory , 1992 .
[46] Rebecca Chen,et al. Generalized Yang-Baxter Equations and Braiding Quantum Gates , 2011, 1108.5215.
[47] Joy Christian. Potentiality, Entanglement and Passion-at-a-Distance , 1999 .
[48] A. Kitaev,et al. Solutions to generalized Yang-Baxter equations via ribbon fusion categories , 2012, 1203.1063.
[49] A. Veselov. Yang–Baxter maps and integrable dynamics , 2002, math/0205335.
[50] Thierry Bastin,et al. Entanglement robustness against particle loss in multiqubit systems , 2018, Physical Review A.
[51] Louis H. Kauffman,et al. Topological aspects of quantum entanglement , 2016, Quantum Inf. Process..
[52] S. Simon,et al. Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.
[53] S. Duplij. Polyadic Hopf Algebras and Quantum Groups , 2018, 2.
[54] Mikio Nakahara,et al. Acceleration of quantum algorithms using three-qubit gates , 2003 .
[55] Hyundong Shin,et al. Entanglement-Free Parameter Estimation of Generalized Pauli Channels , 2021, Quantum.
[56] M. Freedman,et al. Measurement-only topological quantum computation. , 2008, Physical review letters.