Limit Theorems in Discrete Stochastic Geometry

We survey two general methods for establishing limit theorems for functionals in discrete stochastic geometry. The functionals are linear statistics with the general representation \(\sum _{x\in \mathcal{X}}\xi (x,\mathcal{X})\), where \(\mathcal{X}\) is finite and where the interactions of x with respect to \(\mathcal{X}\), given by \(\xi (x,\mathcal{X})\), are spatially correlated. We focus on subadditive methods and stabilization methods as a way to obtain weak laws of large numbers, variance asymptotics, and central limit theorems for normalized and re-scaled versions of \(\sum _{i=1}^{n}\xi (\eta _{i},\{\eta _{j}\}_{j=1}^{n})\), where η j , j ≥ 1, are i.i.d. random variables. The general theory is applied to deduce the limit theory for functionals arising in Euclidean combinatorial optimization, convex hulls of i.i.d. samples, random sequential packing, and dimension estimation.

[1]  Leonidas J. Guibas,et al.  Analysis of scalar fields over point cloud data , 2009, SODA.

[2]  Yachen Lin,et al.  Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns , 2002, Technometrics.

[3]  J. E. Yukich,et al.  Gaussian Limits for Random Measures in Geometric Probability , 2005, math/0503474.

[4]  J. Steele Probability theory and combinatorial optimization , 1987 .

[5]  Mathew D. Penrose,et al.  Gaussian Limts for Random Geometric Measures , 2007 .

[6]  Andrew D. Barbour,et al.  Stein's Method And Applications , 2005 .

[7]  W. Kendall,et al.  New Perspectives in Stochastic Geometry , 2010 .

[8]  J. Quintanilla,et al.  Local volume fraction fluctuations in random media , 1997 .

[9]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[10]  J. Yukich,et al.  Asymptotics for Euclidean functionals with power-weighted edges , 1996 .

[11]  M. Penrose Laws of large numbers in stochastic geometry with statistical applications , 2007, 0711.4486.

[12]  J. E. Yukich,et al.  Stabilization and limit theorems for geometric functionals of Gibbs point processes , 2008, 0802.0647.

[13]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[14]  J. Yukich,et al.  Weak laws of large numbers in geometric probability , 2003 .

[15]  V. Rich Personal communication , 1989, Nature.

[16]  J. Yukich,et al.  Central limit theorems for some graphs in computational geometry , 2001 .

[17]  J. Yukich,et al.  Brownian limits, local limits, extreme value and variance asymptotics for convex hulls in the ball , 2009 .

[18]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[19]  Mathew D. Penrose,et al.  Gaussian Limits for Multidimensional Random Sequential Packing at Saturation , 2006, ArXiv.

[20]  Yooyoung Koo,et al.  Rates of Convergence of Means of Euclidean Functionals , 2006, math/0609382.

[21]  A. Swami,et al.  Energy Scaling Laws for Distributed Inference in Random Networks , 2008, ArXiv.

[22]  P. Bickel,et al.  Sparsity and the Possibility of Inference , 2008 .

[23]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[24]  J. Yukich Probability theory of classical Euclidean optimization problems , 1998 .

[25]  Mathematics of random growing interfaces , 2001, cond-mat/0106165.

[26]  J. Yukich,et al.  Limit theory for point processes in manifolds , 2011, 1104.0914.

[27]  Tailen Hsing On the Asymptotic Distribution of the Area Outside a Random Convex Hull in a Disk , 1994 .

[28]  Sergei Zuyev Strong Markov Property of Poisson Processes and Slivnyak Formula , 2006 .

[29]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[30]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  John P. Mullooly A one dimensional random space-filling problem , 1968 .

[32]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[33]  Devdatt P. Dubhashi,et al.  Probabilistic analysis for a multiple depot vehicle routing problem , 2007 .

[34]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[35]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[36]  J. Yukich,et al.  Moderate Deviations for Some Point Measures in Geometric Probability , 2006, math/0603022.

[37]  Hamid Krim,et al.  Statistics and Analysis of Shapes , 2006, Modeling and Simulation in Science, Engineering and Technology.

[38]  Mathew D. Penrose,et al.  Gaussian limits for generalized spacings. , 2008, 0804.4123.

[39]  Alfred O. Hero,et al.  Applications of entropic spanning graphs , 2002, IEEE Signal Process. Mag..

[40]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  Louis H. Y. Chen,et al.  Normal approximation under local dependence , 2004, math/0410104.

[42]  W. Bastiaan Kleijn,et al.  Shannon entropy estimation based on high-rate quantization theory , 2004, 2004 12th European Signal Processing Conference.

[43]  H. Robbins,et al.  On the „Parking“ Problem , 1985 .

[44]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[45]  Rolf Schneider,et al.  Discrete Aspects of Stochastic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[46]  Mathew D. Penrose,et al.  Normal Approximation in Geometric Probability , 2004 .

[47]  J. Yukich,et al.  Brownian limits, local limits and variance asymptotics for convex hulls in the ball , 2009, 0912.4339.

[48]  W. Bastiaan Kleijn,et al.  On the Estimation of Differential Entropy From Data Located on Embedded Manifolds , 2007, IEEE Transactions on Information Theory.

[49]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[50]  Limit theorems for multi-dimensional random quantizers , 2008 .

[51]  Point process stabilization methods and dimension estimation , 2008 .

[52]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[53]  J. Yukich,et al.  Limit theory for random sequential packing and deposition , 2002 .

[54]  Multivariate Normal Approximation in Geometric Probability , 2007, 0707.3898.

[55]  J. Yukich,et al.  Limit Theorems and Rates of Convergence for Euclidean Functionals , 1994 .

[56]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[57]  J. Steele Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability , 1981 .

[58]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[59]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[60]  C. Buchta,et al.  Zufällige Polyeder - Eine Obersicht , 1985 .

[61]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[62]  J. E. Yukich,et al.  Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points , 2008 .

[63]  Vadim Malyshev,et al.  Gibbs Random Fields , 1991 .

[64]  O. Barndorff-Nielsen,et al.  Stochastic Geometry , 1999 .

[65]  Fernando Affentranger Aproximación aleatoria de cuerpos convexos , 1992 .

[66]  S. Chatterjee A NEW METHOD OF NORMAL APPROXIMATION , 2006, math/0611213.

[67]  A. Barbour,et al.  Normal approximation for random sums , 2006, Advances in Applied Probability.

[68]  Harry Kesten,et al.  The central limit theorem for weighted minimal spanning trees on random points , 1996 .

[69]  Matthias Reitzner,et al.  Central limit theorems for random polytopes , 2005 .

[70]  Ananthram Swami,et al.  Energy scaling laws for distributed inference in random fusion networks , 2008, IEEE Journal on Selected Areas in Communications.

[71]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[72]  S. Torquato Random Heterogeneous Materials , 2002 .

[73]  Intrinsic volumes of inscribed random polytopes in smooth convex bodies , 2009, Advances in Applied Probability.

[74]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[75]  J. Yukich,et al.  Large deviation principles for Euclidean functionals and other nearly additive processes , 2001 .

[76]  J. Yukich,et al.  Large deviations for functionals of spatial point processes with applications to random packing and spatial graphs , 2005 .

[77]  Alfred O. Hero,et al.  Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces , 2006, Statistics and Analysis of Shapes.