Modelling of jet noise: a perspective from large-eddy simulations

In the last decade, many research groups have reported predictions of jet noise using high-fidelity large-eddy simulations (LES) of the turbulent jet flow and these methods are beginning to be used more broadly. A brief overview of the publications since the review by Bodony & Lele (2008, AIAA J. 56, 346–380) is undertaken to assess the progress and overall contributions of LES towards a better understanding of jet noise. In particular, we stress the meshing, numerical and modelling advances which enable detailed geometric representation of nozzle shape variations intended to impact the noise radiation, and sufficiently accurate capturing of the turbulent boundary layer at the nozzle exit. Examples of how LES is currently being used to complement experiments for challenging conditions (such as highly heated pressure-mismatched jets with afterburners) and guide jet modelling efforts are highlighted. Some of the physical insights gained from these numerical studies are discussed, in particular on crackle, screech and shock-associated noise, impingement tones, acoustic analogy models, wavepackets dynamics and resonant acoustic waves within the jet core. We close with some perspectives on the remaining challenges and upcoming opportunities for future applications. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.

[1]  Philippe R. Spalart,et al.  Noise Prediction for Underexpanded Jets in Static and Flight Conditions , 2011 .

[2]  Christophe Bailly,et al.  Effects of Inflow Conditions and Forcing on Subsonic Jet Flows and Noise. , 2005 .

[3]  Pavel Alexeevisch Bakhvalov,et al.  Edge‐based reconstruction schemes for unstructured tetrahedral meshes , 2016 .

[4]  Alan T. Wall,et al.  Crackle-related beamforming of military jet aircraft noise , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[5]  Lars-Erik Eriksson,et al.  Effects of Inflow Conditions and Subgrid Model on LES for Turbulent Jets , 2005 .

[6]  C. Kiris,et al.  Jet Noise Prediction Using Hybrid RANS/LES with Structured Overset Grids , 2017 .

[7]  K. Viswanathan Aeroacoustics of hot jets , 2002, Journal of Fluid Mechanics.

[8]  Stéphane Moreau,et al.  Subsonic Jet Noise Simulations Using Both Structured and Unstructured Grids , 2015 .

[9]  T. Colonius,et al.  Jet–flap interaction tones , 2018, Journal of Fluid Mechanics.

[10]  James E. Bridges,et al.  Evaluating Source Terms of the Generalized Acoustic Analogy using the Jet Engine Noise REduction (JENRE) Code , 2017 .

[11]  Christophe Bogey,et al.  Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets , 2017, Journal of Fluid Mechanics.

[12]  C. Bogey,et al.  Flow structure oscillations and tone production in underexpanded impinging round jets , 2017 .

[13]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Allan C. Aubert,et al.  Crackle in the noise of high-performance aircraft , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[15]  M. Shoeybi,et al.  On the Use of the Ffowcs Williams-Hawkings Equation to Predict Far-Field Jet Noise from Large-Eddy Simulations , 2013 .

[16]  Sanjiva K. Lele,et al.  Aeroacoustics of a supersonic rectangular jet: Experiments and LES predictions , 2012 .

[17]  Takao Suzuki Wave-Packet Representation of Shock-Cell Noise for a Single Round Jet , 2016 .

[18]  A ray tracing study of shock leakage in a model supersonic jet , 2013 .

[19]  Lakshmi Venkatakrishnan,et al.  Crackle - A dominant component of supersonic jet mixing noise 13; 13; , 2000 .

[20]  Sivaram Gogineni,et al.  Noisy Flow Structures in a Heated and Unheated Jet Produced by a Three-Stream Rectangular Nozzle with an Aft Deck , 2016 .

[21]  Gary J. Page,et al.  Adaptive Wall-Modelled Large Eddy Simulation of Jet Noise in Isolated and Installed Configurations , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[22]  Russell W. Powers,et al.  Prediction, Experiments and Optimization of High-Speed Jet Noise Reduction Using Fluidic Inserts , 2014 .

[23]  P. Moin,et al.  Turbulence intensities in large-eddy simulation of wall-bounded flows. , 2018, Physical review fluids.

[24]  Raoyang Zhang,et al.  Jet Noise Prediction: Validation and Physical Insight , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[25]  T. Colonius,et al.  Acoustic resonance in the potential core of subsonic jets , 2017, Journal of Fluid Mechanics.

[26]  A. Lyrintzis,et al.  Analysis of Converging-Diverging Beveled Nozzle Jets Using Large Eddy Simulation with a Wall Model , 2015 .

[27]  D. Edgington-Mitchell Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – A review , 2019, International Journal of Aeroacoustics.

[28]  Ganesh Raman,et al.  ADVANCES IN UNDERSTANDING SUPERSONIC JET SCREECH: REVIEW AND PERSPECTIVE , 1998 .

[29]  A. Uzun,et al.  Some Issues in Large-Eddy Simulations for Chevron Nozzle Jet Flows , 2012 .

[30]  Christophe Bailly,et al.  Numerical study of screech generation in a planar supersonic jet , 2007 .

[31]  Christophe Bailly,et al.  Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105 , 2012, Journal of Fluid Mechanics.

[32]  Sanjiva K. Lele,et al.  A numerical investigation of sound generation in supersonic jet screech , 1999 .

[33]  Analysis of LES for source modeling in jet noise , 2014 .

[35]  Roland Ewert,et al.  CAA broadband noise prediction for aeroacoustic design , 2011 .

[36]  C. Bogey,et al.  Noise of an Overexpanded Mach 3.3 Jet: Non-Linear Propagation Effects and Correlations with Flow , 2014 .

[37]  Christopher K. W. Tam,et al.  Broadband shock-associated noise of moderately imperfectly expanded supersonic jets , 1990 .

[38]  A. Duben,et al.  Jet Noise Simulations Using Quasi-1D Schemes on Unstructured Meshes , 2017 .

[39]  Tim Colonius,et al.  Instability wave models for the near-field fluctuations of turbulent jets , 2011, Journal of Fluid Mechanics.

[40]  Sanjiva K. Lele,et al.  Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech , 2003, Journal of Fluid Mechanics.

[41]  Christopher K. W. Tam,et al.  On the three families of instability waves of high-speed jets , 1989, Journal of Fluid Mechanics.

[43]  Sanjiva K. Lele,et al.  Nozzle wall modeling in unstructured large eddy simulations for hot supersonic jet predictions , 2013 .

[44]  S. Lele,et al.  Current Status of Jet Noise Predictions Using Large-Eddy Simulation , 2008 .

[45]  S. Lele,et al.  A statistical subgrid scale noise model: Formulation , 2003 .

[46]  K. Lowe,et al.  Experimental Investigation of a Heated Supersonic Jet with Total Temperature Non-Uniformity , 2017 .

[47]  Philippe R. Spalart,et al.  Noise Prediction for Increasingly Complex Jets. Part II: Applications , 2005 .

[48]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[49]  D. Honnery,et al.  An explanation for the phase lag in supersonic jet impingement , 2017, Journal of Fluid Mechanics.

[50]  Soshi Kawai,et al.  Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows , 2010, J. Comput. Phys..

[51]  Sergey A. Karabasov,et al.  CABARET GPU Solver for Fast-Turn-Around Flow and Noise Calculations , 2015 .

[52]  G. Park,et al.  Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. , 2018, Annual review of fluid mechanics.

[53]  Tim Colonius,et al.  Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability , 2017, Journal of Fluid Mechanics.

[54]  Steven A. E. Miller,et al.  Prediction of Broadband Shock-Associated Noise Using Reynolds-Averaged Navier-Stokes Computational Fluid Dynamics , 2010 .

[55]  Kailas Kailasanath,et al.  Efficient Supersonic Jet Noise Simulations Using JENRE , 2014 .

[56]  Christophe Bailly,et al.  Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets , 2010, Journal of Fluid Mechanics.

[57]  Christopher K. W. Tam,et al.  Theoretical model of discrete tone generation by impinging jets , 1990, Journal of Fluid Mechanics.

[58]  P. Spalart,et al.  Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests , 2005 .

[59]  J. Lumley Stochastic tools in turbulence , 1970 .

[60]  T. Colonius,et al.  Wave Packets and Turbulent Jet Noise , 2013 .

[61]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[62]  Sanjiva K Lele,et al.  A second golden age of aeroacoustics? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  F. Ham,et al.  Large eddy simulations of supersonic rectangular jets from sinuous exhaust system , 2017 .

[64]  S. Noelting,et al.  Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka) , 2012 .

[65]  Dean R. Chapman,et al.  Computational Aerodynamics Development and Outlook , 1979 .

[66]  Shayan Moini-Yekta,et al.  The LAVA Computational Fluid Dynamics Solver , 2014 .

[67]  Sanjiva K. Lele,et al.  On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets , 2005 .

[68]  Sanjiva K. Lele,et al.  Unstructured Large-Eddy Simulations of Supersonic Jets , 2017 .

[69]  J. E. Ffowcs Williams,et al.  ‘Crackle’: an annoying component of jet noise , 1975, Journal of Fluid Mechanics.

[70]  Sanjiva K. Lele,et al.  Subfilter-scale enrichment of planetary boundary layer large eddy simulation using discrete Fourier–Gabor modes , 2017, Journal of Fluid Mechanics.

[71]  Christopher K. W. Tam,et al.  Mach Wave Radiation from High-Speed Jets , 2009 .

[72]  S. Crow,et al.  Orderly structure in jet turbulence , 1971, Journal of Fluid Mechanics.

[73]  D. L. Hawkings,et al.  Sound generation by turbulence and surfaces in arbitrary motion , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[74]  W. A. McMullan,et al.  Jet Noise: Acoustic Analogy informed by Large Eddy Simulation , 2010 .

[75]  Effect of Nozzle Inflow Conditions on Shock-Cell Structure and Noise in Overexpanded Jets , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[76]  C. Bailly,et al.  Accurate simulation of the noise generated by a hot supersonic jet including turbulence tripping and nonlinear acoustic propagation , 2019, Physics of Fluids.

[77]  B. J. McKeon,et al.  A critical-layer framework for turbulent pipe flow , 2010, Journal of Fluid Mechanics.

[78]  Parviz Moin,et al.  Numerical simulation of a Mach 1.92 turbulent jet and its sound field , 2000 .

[79]  C. Bogey,et al.  Simulation of Subsonic Turbulent Nozzle Jet Flow and Its Near-Field Sound , 2014 .

[80]  D. G. Crighton,et al.  Acoustics as a branch of fluid mechanics , 1981, Journal of Fluid Mechanics.

[81]  James Tyacke,et al.  Research data supporting "Large-Scale Multifidelity, Multiphysics, Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation of an Installed Aeroengine" , 2016 .

[82]  J. McGuirk,et al.  Influence of Nozzle Exit Conditions on the Near-Field Development of High Subsonic and Underexpanded Axisymmetric Jets , 2018 .

[83]  Similarity scaling of jet noise sources for low-order jet noise modelling based on the Goldstein generalised acoustic analogy , 2017 .

[84]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[85]  S. Enomoto,et al.  On the Modification of the Ffowcs Williams-Hawkings Integration for Jet Noise Prediction , 2013 .

[86]  M. E. Goldstein,et al.  A generalized acoustic analogy , 2003, Journal of Fluid Mechanics.

[87]  D. Honnery,et al.  Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet , 2019, Journal of Fluid Mechanics.

[88]  Krishna Viswanathan,et al.  Parametric study of noise from dual-stream nozzles , 2003, Journal of Fluid Mechanics.

[89]  Sergey A. Karabasov,et al.  A volume integral implementation of the Goldstein generalised acoustic analogy for unsteady flow simulations , 2018, Journal of Fluid Mechanics.

[90]  D. Honnery,et al.  Upstream-travelling acoustic jet modes as a closure mechanism for screech , 2018, Journal of Fluid Mechanics.

[91]  T. Colonius,et al.  Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis , 2017, Journal of Fluid Mechanics.

[92]  David A. Bader,et al.  Facial Expression Recognition System using Statistical Feature and Neural Network , 2012 .

[93]  Johan Larsson,et al.  Large eddy simulation with modeled wall-stress: recent progress and future directions , 2016 .

[94]  Tim Colonius,et al.  Wavepackets in the velocity field of turbulent jets , 2012, Journal of Fluid Mechanics.

[95]  T. Colonius,et al.  Spectral analysis of jet turbulence , 2017, Journal of Fluid Mechanics.

[96]  Sanjiva K. Lele,et al.  The source of crackle noise in heated supersonic jets , 2013 .

[97]  Sanjiva K. Lele,et al.  Unstructured Large Eddy Simulations for Nozzle Interior Flow Modeling and Jet Noise Predictions , 2014 .

[98]  Tim Colonius,et al.  Wavepacket models for supersonic jet noise , 2014, Journal of Fluid Mechanics.

[100]  C. Bogey,et al.  Computation of Flow Noise Using Source Terms in Linearized Euler's Equations , 2000 .

[102]  Christopher K. W. Tam,et al.  Stochastic model theory of broadband shock associated noise from supersonic jets , 1987 .

[103]  M. Sanjosé,et al.  Isothermal and heated subsonic jet noise using large eddy simulations on unstructured grids , 2018, Computers & Fluids.

[104]  Andrew Corrigan,et al.  Impact of the Specific Heat Ratio On the Noise Generation in a High-Temperature Supersonic Jet , 2016 .

[105]  P. Spalart,et al.  Jet noise computation based on enhanced DES formulations accelerating the RANS-to-LES transition in free shear layers , 2016 .

[106]  Sanjiva K. Lele,et al.  Crackle Noise in Heated Supersonic Jets , 2012 .

[107]  Sanjiva K. Lele,et al.  Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets , 2018, Journal of Fluid Mechanics.

[108]  E. Fares,et al.  Lattice–Boltzmann Aeroacoustic Analysis of the LAGOON Landing-Gear Configuration , 2014 .

[109]  Numerical Study of Noise Sources Characteristics in An Underexpanded Jet Flow , 2014 .

[110]  Large-Eddy Simulations of Supersonic Jet Noise Generation Using Wall Modeling , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[111]  Sébastien Candel,et al.  Stochastic approach to noise modeling for free turbulent flows , 1994 .

[112]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[114]  Ali Uzun,et al.  Simulation of Noise Generation in Near-Nozzle Region of a Chevron Nozzle Jet , 2009 .

[115]  Tim Colonius,et al.  Large-eddy simulations of co-annular turbulent jet using a Voronoi-based mesh generation framework , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[116]  Sanjiva K. Lele,et al.  Effects of heating on noise radiation from turbulent mixing layers with initially laminar and turbulent boundary layers , 2012 .

[117]  G. Horvay,et al.  Supersonic jet noise , 1970 .

[118]  M. Mihăescu,et al.  Oscillation Modes in Screeching Jets , 2018, AIAA Journal.

[119]  Francois Vuillot,et al.  Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution , 2015 .

[120]  Damiano Casalino,et al.  An Extended Lattice Boltzmann Methodology for High Subsonic Jet Noise Prediction , 2014 .

[121]  John L. Lumley,et al.  Toward a turbulent constitutive relation , 1970, Journal of Fluid Mechanics.

[122]  Christopher K. W. Tam,et al.  SUPERSONIC JET NOISE , 1995 .

[123]  J. Freund Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9 , 2001, Journal of Fluid Mechanics.

[124]  S. Lele,et al.  Spatial Scale Decomposition of Shear Layer Turbulence and the Sound Sources Associated with the Missing Scales in a Large-Eddy Simulation , 2002 .

[125]  Kazuomi Yamamoto,et al.  Quadrupole Corrections for the Permeable-Surface Ffowcs Williams–Hawkings Equation , 2017 .

[126]  N. Murray,et al.  Passive Nozzle-Based Technology for the Reduction of Heated Supersonic Jet Noise , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[127]  Erik Mollo-Christensen,et al.  Jet Noise and Shear Flow Instability Seen From an Experimenter’s Viewpoint , 1967 .

[128]  Mihailo R. Jovanovic,et al.  Input-output analysis of high-speed axisymmetric isothermal jet noise , 2016 .