Misconceptions about Calorimetry

In the past 50 years, calorimeters have become the most important detectors in many particle physics experiments, especially experiments in colliding-beam accelerators at the energy frontier. In this paper, we describe and discuss a number of common misconceptions about these detectors, as well as the consequences of these misconceptions. We hope that it may serve as a useful source of information for young colleagues who want to familiarize themselves with these tricky instruments.

[1]  D. Petyt Anomalous APD signals in the CMS Electromagnetic Calorimeter , 2012 .

[2]  T. Kamon,et al.  Neutron induced pulses in CDF forward hadron calorimeter , 1989 .

[3]  K. Hara,et al.  A systematic measurement of energy resolution and e/π ratio of a lead/plastic-scintillator sampling calorimeter , 1999 .

[4]  F. Bedeschi,et al.  Particle identification in the longitudinally unsegmented RD52 calorimeter , 2014 .

[6]  N. Akchurin,et al.  The response of CMS combined calorimeters to single hadrons, electrons and muons , 2007 .

[7]  W. Willis,et al.  Performance of the uranium/plastic scintillator calorimeter for the HELIOS experiment at CERN , 1987 .

[8]  M. Thomson Particle flow calorimetry and the PandoraPFA algorithm , 2009, 0907.3577.

[9]  M. Albrow,et al.  A preshower detector for the CDF Plug Upgrade: test beam results , 1999 .

[10]  P. Neelin,et al.  Test of the Zeus forward calorimeter prototype , 1990 .

[11]  Kiyotomo Kawagoe,et al.  Experimental tests of particle flow calorimetry , 2015, 1507.05893.

[12]  E. Ros,et al.  Perfomance of a compensating lead-scintillator hadronic calorimeter , 1987 .

[13]  Burak Bilki,et al.  Response of the CALICE Si-W Electromagnetic Calorimeter Physics Prototype to Electrons , 2008, 0811.2354.

[14]  I. Lee,et al.  The zero-degree calorimeter for the relativistic heavy-ion experiment WA80 at CERN , 1989 .

[15]  J. Brau,et al.  Advances in Calorimetry , 2010 .

[16]  M. R. Mondardini,et al.  Lateral shower profiles in a lead/scintillating fiber calorimeter , 1992 .

[17]  E. al.,et al.  Energy linearity and resolution of the ATLAS electromagnetic barrel calorimeter in an electron test-beam , 2006, physics/0608012.

[18]  M. I. Josa,et al.  On the differences between high-energy proton and pion showers and their signals in a non-compensating calorimeter , 1998 .

[19]  F. Bedeschi,et al.  The electromagnetic performance of the RD52 fiber calorimeter , 2014 .

[20]  James O. Pilcher,et al.  Testbeam studies of production modules of the ATLAS tile calorimeter , 2009 .

[21]  B. C. Ferreira,et al.  Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV , 2010 .

[22]  R. Wigmans Calorimetry : energy measurement in particle physics , 2017 .

[23]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[24]  M. R. Mondardini,et al.  Electron, pion and multiparticle detection with a lead/scintillating-fiber calorimeter , 1991 .

[25]  D. Saxon,et al.  Performance of a lead-glass electromagnetic shower detector at fermilab , 1975 .

[26]  G. Passardi,et al.  Liquid xenon ionization and scintillation: Studies for a totally active vector electromagnetic calorimeter , 1992 .

[27]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[28]  Energy flow in a hadronic cascade: Application to hadron calorimetry , 2007 .

[29]  S. Lee,et al.  Hadron detection with a dual-readout fiber calorimeter , 2017, 1703.09120.

[30]  M. Livan,et al.  Scintillating-fibre calorimetry , 1995 .

[31]  M. Albrow,et al.  Intercalibration of the longitudinal segments of a calorimeter system , 2002 .

[32]  A. Penzo,et al.  Hadron and jet detection with a dual-readout calorimeter , 2005 .