CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat.

Herein, the assembly of CsPbBr3 QD/AlOx inorganic nanocomposites, by using atomic layer deposition (ALD) for the growth of the amorphous alumina matrix (AlOx ), is described as a novel protection scheme for such QDs. The nucleation and growth of AlOx on the QD surface was thoroughly investigated by miscellaneous techniques, which highlighted the importance of the interaction between the ALD precursors and the QD surface to uniformly coat the QDs while preserving the optoelectronic properties. These nanocomposites show exceptional stability towards exposure to air (for at least 45 days), irradiation under simulated solar spectrum conditions (for at least 8 h), and heat (up to 200 °C in air), and finally upon immersion in water. This method was extended to the assembly of CsPbBrx I3-x QD/AlOx and CsPbI3 QD/AlOx nanocomposites, which were more stable than the pristine QD films.

[1]  Wifredo Ricart,et al.  The version of record : , 2018 .

[2]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[3]  Y. Tong,et al.  Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid‐ Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion , 2016 .

[4]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[5]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[6]  Manas R. Parida,et al.  Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. , 2015, The journal of physical chemistry letters.

[7]  Nam-Gyu Park,et al.  Stability Issues on Perovskite Solar Cells , 2015 .

[8]  W. Tisdale,et al.  Near-Infrared Photoluminescence and Thermal Stability of PbS Nanocrystals at Elevated Temperatures , 2016 .

[9]  Lioz Etgar,et al.  Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. , 2016, Nanoscale.

[10]  G. Pandraud,et al.  Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. , 2008, Nano letters.

[11]  M. Law,et al.  Robust, functional nanocrystal solids by infilling with atomic layer deposition. , 2011, Nano letters.

[12]  L. Manna,et al.  Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere , 2016 .

[13]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[14]  Sidney T. Malak,et al.  Large‐Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature , 2016 .

[15]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[16]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[17]  Robert Y. Wang,et al.  Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals , 2015, Scientific Reports.

[18]  C. Detavernier,et al.  Embedding Quantum Dot Monolayers in Al2O3 Using Atomic Layer Deposition , 2011 .

[19]  H. Snaith,et al.  Room-Temperature Atomic Layer Deposition of Al2 O3 : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells. , 2016, ChemSusChem.

[20]  J. R. Ommen,et al.  Deposition Mechanism of Aluminum Oxide on Quantum Dot Films at Atmospheric Pressure and Room Temperature , 2016 .

[21]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[22]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[23]  R. Advíncula,et al.  Facile patterning of hybrid CdSe nanoparticle films by photoinduced surface defects. , 2011, ACS applied materials & interfaces.

[24]  Haibo Zeng,et al.  Photon Driven Transformation of Cesium Lead Halide Perovskites from Few‐Monolayer Nanoplatelets to Bulk Phase , 2016, Advanced materials.

[25]  Haizheng Zhong,et al.  Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices , 2016, Chemical science.

[26]  M. Berezin,et al.  Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition. , 2016, Chemical communications.

[27]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[28]  Matt Law,et al.  The photothermal stability of PbS quantum dot solids. , 2011, ACS nano.

[29]  Liberato Manna,et al.  X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water , 2015, ACS nano.

[30]  D. Milliron,et al.  Transparent Conductive Oxide Nanocrystals Coated with Insulators by Atomic Layer Deposition , 2016 .

[31]  M. Law,et al.  PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V(-1) s(-1). , 2013, Nano letters.

[32]  J. Elam,et al.  Interfaces and Composition Profiles in Metal–Sulfide Nanolayers Synthesized by Atomic Layer Deposition , 2013 .

[33]  Stacey F. Bent,et al.  Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. , 2015, Nanoscale.

[34]  Vladimir Bulović,et al.  Subdiffusive exciton transport in quantum dot solids. , 2014, Nano letters.

[35]  Ru‐Shi Liu,et al.  Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. , 2016, Angewandte Chemie.

[36]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[37]  Kilwon Cho,et al.  Solar Cells: A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells (Adv. Mater. 1/2016) , 2016 .

[38]  H. Shim,et al.  Atomic layer deposition effect on the electrical properties of Al2O3-passivated PbS quantum dot field-effect transistors , 2015 .

[39]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[40]  P. Guyot-Sionnest,et al.  Atomic Layer Deposition of ZnO in Quantum Dot Thin Films , 2009 .

[41]  Zeger Hens,et al.  Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. , 2011, ACS nano.

[42]  C. Detavernier,et al.  A Case Study of ALD Encapsulation of Quantum Dots: Embedding Supported CdSe/CdS/ZnS Quantum Dots in a ZnO Matrix , 2016 .

[43]  Zeger Hens,et al.  Surface chemistry of colloidal PbSe nanocrystals. , 2008, Journal of the American Chemical Society.

[44]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[45]  M. Al-Marri,et al.  Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application , 2016, Science China Materials.

[46]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[47]  Aziz Genç,et al.  Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. , 2016, ACS applied materials & interfaces.

[48]  Yu Tong,et al.  Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. , 2015, Nano letters.