Structure- and Extension-Informed Taxonomy Alignment

Ontologies and concept taxonomies help software systems organize data more effectively for particular application domains. Ontologies also enable sharing and integration of data from different domains and data sources. However, ontologies from different domains are rarely identical; thus, there is need for techniques to find alignments between concepts in different ontologies and taxonomies. In this paper, we first note that alignment algorithms can be classified into two, structurally-informed and extensionally-informed. We then present a concept vector based scheme that capture structural information inherent in taxonomies to facilitate structure-based matching of concepts across taxonomies. We further note the structurally-informed concept vectors can further enable us to benefit from an available corpus of documents to implement extensionally-informed matching schemes with improved power of discriminating synonyms and homonyms of concepts.

[1]  Alan F. Smeaton,et al.  Using WordNet in a Knowledge-Based Approach to Information Retrieval , 1995 .

[2]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .

[3]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[4]  Martin L. Kersten,et al.  A Graph-Oriented Model for Articulation of Ontology Interdependencies , 1999, EDBT.

[5]  Pedro M. Domingos,et al.  Reconciling schemas of disparate data sources: a machine-learning approach , 2001, SIGMOD '01.

[6]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[7]  Kaizhong Zhang,et al.  On the Editing Distance Between Undirected Acyclic Graphs , 1996, Int. J. Found. Comput. Sci..

[8]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[9]  K. Selçuk Candan,et al.  Integrating and querying taxonomies with quest in the presence of conflicts , 2007, SIGMOD '07.

[10]  Pedro M. Domingos,et al.  Learning Source Description for Data Integration , 2000, WebDB.

[11]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[12]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[13]  Luigi Palopoli,et al.  DIKE: a system supporting the semi‐automatic construction of cooperative information systems from heterogeneous databases , 2003, Softw. Pract. Exp..

[14]  Pedro M. Domingos,et al.  Ontology Matching: A Machine Learning Approach , 2004, Handbook on Ontologies.

[15]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[16]  Keith W. Kintigh,et al.  The Promise and Challenge of Archaeological Data Integration , 2005, American Antiquity.

[17]  Prasenjit Mitra,et al.  Semi-automatic Integration of Knowledge Sources , 1999 .

[18]  Luigi Palopoli,et al.  An automatic technique for detecting type conflicts in database schemes , 1998, CIKM '98.

[19]  Jong Wook Kim,et al.  Discovering mappings in hierarchical data from multiple sources using the inherent structure , 2006, Knowledge and Information Systems.

[20]  Laura M. Haas,et al.  Schema Mapping as Query Discovery , 2000, VLDB.

[21]  K. Selçuk Candan,et al.  FICSR: feedback-based inconsistency resolution and query processing on misaligned data sources , 2007, SIGMOD '07.

[22]  Jong Wook Kim,et al.  CP/CV: concept similarity mining without frequency information from domain describing taxonomies , 2006, CIKM '06.

[23]  Erhard Rahm,et al.  Generic Schema Matching with Cupid , 2001, VLDB.

[24]  Laura M. Haas,et al.  The Clio project: managing heterogeneity , 2001, SGMD.

[25]  Mounia Lalmas,et al.  Information Retrieval: Uncertainty and Logics: Advanced Models for the Representation and Retrieval of Information , 1998 .

[26]  Tova Milo,et al.  Using Schema Matching to Simplify Heterogeneous Data Translation , 1998, VLDB.

[27]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[28]  Andreas Heß An Iterative Algorithm for Ontology Mapping Capable of Using Training Data , 2006, ESWC.

[29]  Eugene W. Myers,et al.  AnO(ND) difference algorithm and its variations , 1986, Algorithmica.

[30]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.