Multigrid cell-centered techniques for high-order incompressible flow numerical solutions

Abstract A multigrid pressure correction scheme suitable for high order discretizations of the incompressible Navier–Stokes equations is developed and demonstrated. The pressure correction equation is discretized with fourth-order compact finite-difference approximations. Iterative methods based on multigrid techniques accelerate the most demanding part of the overall solution algorithm, which is the numerical solution of the arised large and sparse linear system. Geometrical multigrid methods, using partial semicoarsenig strategy and zebra line Gauss–Seidel relaxation, are employed to efficiently approximate the solution of the resulting algebraic linear system. Effects of various multigrid components on the pressure correction procedure are evaluated and new high-order transfer operators are developed for the case of cell-centered grids. Their convergence rates are also compared with commonly used intergrid transfer operators. Furthermore, numerically comparisons between different multigrid cycle approaches, such as V -, W - and F - cycle , are presented. The performance tests demonstrate that the new pressure correction approach significantly reduces the computational effort compared to single-grid algorithms. Furthermore, it is shown that the overall high order accuracy of the numerical method is retained in space and time with increasing Reynolds number.

[1]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .

[2]  Charles Merkle,et al.  Time-accurate unsteady incompressible flow algorithms based on artificial compressibility , 1987 .

[3]  Piotr K. Smolarkiewicz,et al.  On spurious vortical structures , 2001 .

[4]  Yue Yu,et al.  Generalized fictitious methods for fluid-structure interactions: Analysis and simulations , 2013, J. Comput. Phys..

[5]  John A. Ekaterinaris,et al.  High‐order accurate numerical solutions of incompressible flows with the artificial compressibility method , 2004 .

[6]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[7]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[8]  Joel H. Ferziger,et al.  A robust high-order compact method for large eddy simulation , 2003 .

[9]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[10]  T. Gjesdal,et al.  Comparison of pressure correction smoothers for multigrid solution of incompressible flow , 1997 .

[11]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[12]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[13]  R. Hirsh,et al.  Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique , 1975 .

[14]  S. A. Jordan An iterative scheme for numerical solution of steady incompressible viscous flows , 1992 .

[15]  J. Michelsen,et al.  Aerodynamic predictions for the Unsteady Aerodynamics Experiment Phase-II rotor at the National Renewable Energy Laboratory , 2000 .

[16]  Murli M. Gupta,et al.  Comparison of Second- and Fourth-Order Discretizations for Multigrid Poisson Solvers , 1997 .

[17]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[18]  Pieter Wesseling,et al.  Cell-centered multigrid for interface problems , 1988 .

[19]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[20]  P. Moin,et al.  A numerical method for large-eddy simulation in complex geometries , 2004 .

[21]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Marcus Mohr,et al.  Cell-centred multigrid revisited , 2004 .

[24]  Pieter Wesseling,et al.  Vertex-centered and cell-centered multigrid for interface problems , 1992 .

[25]  Mehdi Dehghan,et al.  A multigrid compact finite difference method for solving the one‐dimensional nonlinear sine‐Gordon equation , 2015 .

[26]  T. Loc,et al.  Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: a comparison with experimental visualization and measurements , 1985, Journal of Fluid Mechanics.

[27]  Stuart E. Rogers,et al.  Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989 , 1990 .

[28]  Miguel R. Visbal,et al.  High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI , 1998 .

[29]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[30]  Piet Hemker,et al.  On the order of prolongations and restrictions in multigrid procedures , 1990 .

[31]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[32]  Barry Smith,et al.  Multigrid and multilevel methods for quadratic spline collocation , 1997 .

[33]  Elias Balaras,et al.  Topology preserving advection of implicit interfaces on Cartesian grids , 2015, J. Comput. Phys..

[34]  C. W. Hirt,et al.  SOLA: a numerical solution algorithm for transient fluid flows , 1975 .

[35]  Krishnan Mahesh,et al.  High order finite difference schemes with good spectral resolution , 1997 .

[36]  Jian Shen,et al.  The analysis of multigrid algorithms for cell centered finite difference methods , 1996, Adv. Comput. Math..

[37]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[38]  J. Wu Theory for Aerodynamic Force and Moment in Viscous Flows , 1981 .

[39]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[40]  F. Sotiropoulos,et al.  Immersed boundary methods for simulating fluid-structure interaction , 2014 .

[41]  Do Y. Kwak V-Cycle Multigrid for Cell-Centered Finite Differences , 1999, SIAM J. Sci. Comput..

[42]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[43]  Chang Sung Kim,et al.  Computational Challenges of Viscous Incompressible Flows , 2005 .

[44]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[45]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[46]  Christopher R. Anderson,et al.  A High Order Explicit Method for the Computation of Flow About a Circular Cylinder , 1996 .

[47]  E. N. Mathioudakis,et al.  Iterative solution of elliptic collocation systems on a cognitive parallel computer , 2004 .

[48]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[49]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[50]  Jun Zhang Multigrid Method and Fourth-Order Compact Scheme for 2D Poisson Equation with Unequal Mesh-Size Discretization , 2002 .

[51]  Fue-Sang Lien,et al.  Conditional semicoarsening multigrid algorithm for the Poisson equation on anisotropic grids , 2005 .

[52]  Nicola Parolini,et al.  Numerical investigation on the stability of singular driven cavity flow , 2002 .

[53]  John A. Ekaterinaris,et al.  A staggered grid, high-order accurate method for the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[54]  Moshe Rosenfeld,et al.  Time‐dependent solutions of viscous incompressible flows in moving co‐ordinates , 1991 .

[55]  Yongbin Ge,et al.  Multigrid method and fourth-order compact difference discretization scheme with unequal meshsizes for 3D poisson equation , 2010, J. Comput. Phys..

[56]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[57]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[58]  Jun Zhang,et al.  A transformation-free HOC scheme and multigrid method for solving the 3D Poisson equation on nonuniform grids , 2013, J. Comput. Phys..