Constants of motion for superconducting Josephson arrays

[1]  S. Strogatz,et al.  Integrability of a globally coupled oscillator array. , 1993, Physical Review Letters.

[2]  M. Sevryuk New cases of quasiperiodic motions in reversible systems. , 1993, Chaos.

[3]  Naoko Nakagawa,et al.  Collective Chaos in a Population of Globally Coupled Oscillators , 1993 .

[4]  C. Pegrum Natural Josephson junctions , 1992, Nature.

[5]  Nichols,et al.  Ubiquitous neutral stability of splay-phase states. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  Kleiner,et al.  Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals. , 1992, Physical review letters.

[7]  Schwartz,et al.  Interhyperhedral diffusion in Josephson-junction arrays. , 1992, Physical review letters.

[8]  Hansel,et al.  Clustering in globally coupled phase oscillators. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[9]  Kurt Wiesenfeld,et al.  Averaging of globally coupled oscillators , 1992 .

[10]  P. Ashwin,et al.  The dynamics ofn weakly coupled identical oscillators , 1992 .

[11]  S. Benz,et al.  Two-dimensional arrays of Josephson junctions as voltage-tunable oscillators , 1991 .

[12]  Otsuka Winner-takes-all dynamics and antiphase states in modulated multimode lasers. , 1991, Physical review letters.

[13]  M. Golubitsky,et al.  Ponies on a merry-go-round in large arrays of Josephson junctions , 1991 .

[14]  M. Sevryuk Lower-dimensional tori in reversible systems. , 1991, Chaos.

[15]  Samuel P. Benz,et al.  Coherent emission from two‐dimensional Josephson junction arrays , 1991 .

[16]  S. Strogatz,et al.  Dynamics of a globally coupled oscillator array , 1991 .

[17]  Peter Ashwin,et al.  Three identical oscillators with symmetric coupling , 1990 .

[18]  Hadley,et al.  Phase locking of Josephson-junction series arrays. , 1988, Physical review. B, Condensed matter.

[19]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[20]  Peter Hadley,et al.  Dynamical states and stability of linear arrays of Josephson junctions , 1987 .

[21]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[22]  J. Hansen,et al.  Static and dynamic interactions between Josephson junctions , 1984 .

[23]  Konstantin K. Likharev,et al.  Mutual phase-locking in Josephson junction arrays , 1984 .

[24]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[25]  Y. Yamaguchi,et al.  Self-synchronization of nonlinear oscillations in the presence of fluctuations , 1981 .

[26]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[27]  M. Hénon,et al.  Integrals of the Toda lattice , 1974 .

[28]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[29]  D. Mccumber Effect of ac Impedance on dc Voltage‐Current Characteristics of Superconductor Weak‐Link Junctions , 1968 .

[30]  W. C. Stewart,et al.  CURRENT‐VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTIONS , 1968 .

[31]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[32]  S. Strogatz,et al.  Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  K. Delin,et al.  Foundations of Applied Superconductivity , 1991 .

[34]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[35]  T. Van Duzer,et al.  Principles of Superconductive Devices and Circuits , 1981 .