Structure-mining: screening structure models by automated fitting to the atomic pair distribution function over large numbers of models

Structure-mining finds and returns the best-fit structures from structural databases given a measured pair distribution function data set. Using databases and heuristics for automation, it has the potential to save experimenters a large amount of time as they explore candidate structures from the literature.

[1]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[2]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[3]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[4]  S. Billinge,et al.  Magnetic structure determination from the magnetic pair distribution function (mPDF): ground state of MnO. , 2014, Acta crystallographica. Section A, Foundations and advances.

[5]  I. Fankuchen,et al.  Reaction between Ferric Oxide and Barium Carbonate in the Solid Phase. Identification of Phases by X-Ray Diffraction1 , 1946 .

[6]  J. D. De Yoreo,et al.  Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. , 2018, Nanoscale.

[7]  H. Rinn,et al.  Chemical Analysis by X-Ray Diffraction , 1938 .

[8]  M. Arenz,et al.  Spatially Localized Synthesis and Structural Characterization of Platinum Nanocrystals Obtained Using UV Light , 2018, ACS omega.

[9]  Xiaohao Yang,et al.  Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. , 2015, Acta crystallographica. Section A, Foundations and advances.

[10]  J. Cravillon,et al.  Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. , 2011, Angewandte Chemie.

[11]  Andrew L. Goodwin,et al.  The crystallography of correlated disorder , 2015, Nature.

[12]  Xiaohao Yang,et al.  Magnetic pair distribution function analysis of local magnetic correlations. , 2014, Acta crystallographica. Section A, Foundations and advances.

[13]  Diego A. Gómez-Gualdrón,et al.  The materials genome in action: identifying the performance limits for methane storage , 2015 .

[14]  C. Bridges,et al.  Defect Genome of Cubic Perovskites for Fuel Cell Applications , 2017 .

[15]  Sten Andersson,et al.  Diskrete Titanoxydphasen im Zusammensetzungsbereich TiO1,75-TiO1,90 , 2004, Naturwissenschaften.

[16]  Zheng Gai,et al.  Stoichiometric Control over Ferroic Behavior in Ba(Ti1–xFex)O3 Nanocrystals , 2019, Chemistry of Materials.

[17]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[18]  James R. McBride,et al.  Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. , 2013, Physical chemistry chemical physics : PCCP.

[19]  J. Akimoto,et al.  Refinement of hexagonal BaTiO3 , 1994 .

[20]  B. Frazer,et al.  SINGLE-CRYSTAL NEUTRON ANALYSIS OF TETRAGONAL BaTiO$sub 3$ , 1955 .

[21]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[22]  J. Hodeau,et al.  Structural aspects of the metal-insulator transitions in (Ti0.9975V0.0025)4O7 , 1979 .

[23]  R. Neder,et al.  Structure of nanoparticles from powder diffraction data using the pair distribution function , 2005 .

[24]  S. Andersson,et al.  PHASE ANALYSIS STUDIES ON THE TITANIUM-OXYGEN SYSTEM , 1957 .

[25]  P. F. Peterson,et al.  Combinatorial appraisal of transition states for in situ pair distribution function analysis , 2017 .

[26]  S. Rundqvist,et al.  The Crystal Structure of Ti5O9. , 1960 .

[27]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[28]  Jonathan Paisley,et al.  SNAP-1D: a computer program for qualitative and quantitative powder diffraction pattern analysis using the full pattern profile , 2004 .

[29]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[30]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[31]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[32]  P. Böni,et al.  New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors , 2013, Nature Communications.

[33]  P. F. Peterson,et al.  PDFgetN: a user‐friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data , 2000 .

[34]  T. Proffen,et al.  Building and refining complete nanoparticle structures with total scattering data , 2011 .

[35]  B. Toby CMPR – a powder diffraction toolkit , 2005 .

[36]  Andrew L. Goodwin,et al.  Applications of pair distribution function methods to contemporary problems in materials chemistry , 2011 .

[37]  P. Juhás,et al.  Towards solution and refinement of organic crystal structures by fitting to the atomic pair distribution function. , 2016, Acta crystallographica. Section A, Foundations and advances.

[38]  T. Osawa,et al.  Low-Density Form of NaGaSi2O6 , 1995 .

[39]  M. Marezio,et al.  The crystal structure of Ti4O7, a member of the homologous series TinO2n−1 , 1971 .

[40]  W. Roth Magnetic Structures of MnO, FeO, CoO, and NiO , 1958 .

[41]  Ashley A. White The Materials Genome Initiative: One year on , 2012 .

[42]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[43]  N. Rotiroti,et al.  Low-temperature behavior of NaGaSi2O6 , 2007 .

[44]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[45]  Simon J. L. Billinge,et al.  Revealing the mechanisms behind SnO2 nanoparticle formation and growth during hydrothermal synthesis: an in situ total scattering study. , 2012, Journal of the American Chemical Society.

[46]  C. Jin,et al.  Crystal structure of dense nanocrystalline BaTiO3 ceramics , 2008 .

[47]  R. Fletcher A modified Marquardt subroutine for non-linear least squares , 1971 .

[48]  Jonathan Paisley,et al.  High-throughput powder diffraction. I. A new approach to qualitative and quantitative powder diffraction pattern analysis using full pattern profiles , 2004 .

[49]  Thompson,et al.  Direct Observation of Lattice Polaron Formation in the Local Structure of La1-xCaxMnO3. , 1996, Physical review letters.

[50]  B. Iversen,et al.  In situ total X-ray scattering study of WO₃ nanoparticle formation under hydrothermal conditions. , 2014, Angewandte Chemie.

[51]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[52]  G. Redhammer,et al.  Synthesis and structural properties of clinopyroxenes of the hedenbergite CaFe2+Si2O6 – aegirine NaFe3+Si2O6 solid-solution series , 2000 .

[53]  C. L. Farrow,et al.  Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.

[54]  Bachir Aoun,et al.  Fullrmc, a rigid body reverse monte carlo modeling package enabled with machine learning and artificial intelligence , 2016, J. Comput. Chem..

[55]  J. P. Remeika,et al.  Structural aspects of the metal-insulator transitions in Ti4O7 , 1973 .

[56]  Xiaohao Yang,et al.  Atomic structures and gram scale synthesis of three tetrahedral quantum dots. , 2014, Journal of the American Chemical Society.

[57]  Simon J L Billinge,et al.  Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[58]  M. Marezio,et al.  Phase transitions in Ti 5 O 9 single crystals: Electrical conductivity, magnetic susceptibility, specific heat, electron paramagnetic resonance, and structural aspects , 1977 .

[59]  M. Weisz Powder Diffraction Theory And Practice , 2016 .

[60]  A. V. Chichagov,et al.  MINCRYST: A crystallographic database for minerals, local and network (WWW) versions , 2001 .

[61]  I. Reaney,et al.  Vacancy ordering in reduced barium titanate , 2004 .

[62]  Simon J. L. Billinge,et al.  Modelling pair distribution functions (PDFs) of organic compounds: describing both intra‐ and intermolecular correlation functions in calculated PDFs , 2015 .

[63]  K. K. Chipley,et al.  The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS , 2012 .

[64]  Simon J. L. Billinge,et al.  Nyquist-Shannon sampling theorem applied to refinements of the atomic pair distribution function , 2011, 1104.0874.

[65]  A. Cheetham,et al.  Building a high resolution total scattering powder diffractometer – upgrade of NPD at MLNSC , 2002 .

[66]  Jianzhong Zhang Room-temperature compressibilities of MnO and CdO: further examination of the role of cation type in bulk modulus systematics , 1999 .

[67]  Tomislav Friščić,et al.  Real-time and in situ monitoring of mechanochemical milling reactions. , 2013, Nature chemistry.

[68]  A. P. Hammersley,et al.  FIT2D: a multi-purpose data reduction, analysis and visualization program , 2016 .

[69]  J. Staunton,et al.  Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory. , 2015, Physical review letters.

[70]  W. G. Marshall,et al.  Phase transitions in BaTiO3: a high-pressure neutron diffraction study , 2005 .

[71]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[72]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[73]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[74]  Mustapha Sadki,et al.  The HighScore suite , 2014, Powder Diffraction.

[75]  H. L. Johnston,et al.  Structure of Barium Titanate at Elevated Temperatures , 1951 .

[76]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[77]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[78]  Carmelo Giacovazzo,et al.  QUALX: a computer program for qualitative analysis using powder diffraction data , 2008 .

[79]  Y. Gogotsi,et al.  2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). , 2017, Nanoscale.

[80]  T. Proffen,et al.  DISCUS: a program for diffuse scattering and defect‐structure simulation , 1997 .

[81]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[82]  P. Juhás,et al.  Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data , 2019, Acta crystallographica. Section A, Foundations and advances.

[83]  R. Downs,et al.  The American Mineralogist crystal structure database , 2003 .

[84]  Sanford L. Moskowitz The Advanced Materials Revolution: Technology and Economic Growth in the Age of Globalization , 2009 .

[85]  G. Paterson,et al.  Structure–property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes , 2018 .

[86]  S. Kauzlarich,et al.  Synthesis and Characterization of a New Compound with Alternating MnO22- and Zn2As22- Layers: Ba2MnZn2As2O2 , 1998 .

[87]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[88]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[89]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[90]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[91]  Valeri Petkov,et al.  FIT, a computer program for decomposition of powder diffraction patterns and profile analysis of pair , 1990 .

[92]  Gang Chen,et al.  Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells , 2019, Nature Communications.

[93]  G. Redhammer,et al.  Single-crystal X-ray diffraction and temperature dependent 57Fe Mössbauer spectroscopy on the hedenbergite-aegirine (Ca,Na)(Fe2+,Fe3+)Si2O6 solid solution , 2006 .

[94]  Yung-Jin Hu,et al.  In situ studies of a platform for metastable inorganic crystal growth and materials discovery , 2014, Proceedings of the National Academy of Sciences.

[95]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[96]  T. Osawa,et al.  The crystal structure of NaGaSi2O6 pyroxene , 1983 .

[97]  Athanassios D. Katsenis,et al.  In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework , 2015, Nature Communications.

[98]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[99]  D. Keen,et al.  Magnetic structure of MnO at 10 K from total neutron scattering data. , 2006, Physical review letters.

[100]  Luca Lutterotti,et al.  Full-profile search–match by the Rietveld method , 2019, Journal of applied crystallography.

[101]  A. Allen,et al.  Combined fitting of small‐ and wide‐angle X‐ray total scattering data from nanoparticles: benefits and issues , 2014 .

[102]  A. Mewis,et al.  Neue Arsenide mit ThCr2Si2- oder einer damit verwandten Struktur: Die Verbindungen ARh2As2 (A: Eu, Sr, Ba) und BaZn2As2 / New Arsenides with ThCr2Si2-type or Related Structures: The Compounds ARh2As2 (A: Eu, Sr, Ba) and BaZn2As2 , 2007 .

[103]  S. Billinge,et al.  Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)2As2 , 2016, 1608.02684.

[104]  Andrew G. Glen,et al.  APPL , 2001 .

[105]  R. Downs Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density , 2003 .

[106]  M. Azuma,et al.  High-pressure synthesis of BaVO3: A new cubic perovskite , 2014 .

[107]  Carolo Friederico Gauss Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium , 2014 .

[108]  A. Clearfield,et al.  Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate-Phosphate Ion Exchange Materials. , 2017, Inorganic chemistry.

[109]  R. Downs,et al.  Model pyroxenes II: Structural variation as a function of tetrahedral rotation , 2004 .

[110]  J. Mitchell,et al.  Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition , 2019, Nature Communications.

[111]  S. Wada,et al.  Crystal structure of barium titanate fine particles including Mg and analysis of their lattice vibration , 2000 .

[112]  R. Downs,et al.  In situ high-pressure single-crystal X-ray study of aegirine, NaFe3+Si2O6, and the role of M1 size in clinopyroxene compressibility , 2008 .

[113]  C. Shull,et al.  NEUTRON DIFFRACTION BY PARAMAGNETIC AND ANTIFERROMAGNETIC SUBSTANCES , 1951 .

[114]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[115]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[116]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[117]  John S. O. Evans,et al.  An Exhaustive Symmetry Approach to Structure Determination: Phase Transitions in Bi2Sn2O7. , 2016, Journal of the American Chemical Society.

[118]  R. Young,et al.  The Rietveld method , 2006 .

[119]  A. Soper Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement , 2005 .

[120]  A. Altomare,et al.  QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD , 2015 .

[121]  R. Dinnebier,et al.  Powder diffraction : theory and practice , 2008 .

[122]  C. Liebske,et al.  The crystal structure of pyroxenes along the jadeite hedenbergite and jadeite aegirine joins , 2007 .

[123]  Adam A. Corrao,et al.  Synthesis, characterization, and growth mechanism of motifs of ultrathin cobalt-substituted NaFeSi2O6 nanowires , 2018 .

[124]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[125]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[126]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[127]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[128]  R. Saraf,et al.  Structure and Catalytic Activity of Cr-Doped BaTiO3 Nanocatalysts Synthesized by Conventional Oxalate and Microwave Assisted Hydrothermal Methods. , 2016, Inorganic chemistry.

[129]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[130]  D. Chateigner,et al.  Fast microstructure and phase analyses of nanopowders using combined analysis of transmission electron microscopy scattering patterns. , 2014, Acta crystallographica. Section A, Foundations and advances.

[131]  G. Shirane,et al.  NEUTRON DIFFRACTION STUDY OF ORTHORHOMBIC BaTiO$sub 3$ , 1957 .