Identification of genetic elements in metabolism by high-throughput mouse phenotyping

Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.The genetic basis of metabolic diseases is incompletely understood. Here, by high-throughput phenotyping of 2,016 knockout mouse strains, Rozman and colleagues identify candidate metabolic genes, many of which are associated with unexplored regulatory gene networks and metabolic traits in human GWAS.

Paul Flicek | Steve D. M. Brown | Hiroshi Masuya | Colin McKerlie | Monica Campillos | Ann-Marie Mallon | Wolfgang Wurst | Thomas Werner | Harald Grallert | Karen L Svenson | Martin Klingenspor | Yann Herault | Sara Wells | Helmut Fuchs | Jacqueline K. White | Stephen A Murray | Jacqueline K White | Aakash Chavan Ravindranath | Johannes Beckers | Terrence F Meehan | Hamed Haselimashhadi | Holger Maier | Radislav Sedlacek | Je Kyung Seong | Bret A Moore | Jeremy Mason | Ann M Flenniken | K C Kent Lloyd | Eckhard Wolf | Corey L Reynolds | Valerie Gailus-Durner | Tania Sorg | Mark W. Moore | Corey L. Reynolds | Helen E Parkinson | J. Mason | A. Beaudet | Lynette R. Bower | A. Flenniken | H. Fuchs | Xiang Gao | Y. Hérault | C. Lelliott | A. Mallon | H. Masuya | C. McKerlie | T. Meehan | S. Murray | H. Parkinson | T. Sorg | K. Svenson | David B. West | S. Wells | T. Werner | P. Flicek | E. Wolf | G. Tocchini-Valentini | W. Wurst | M. Campillos | H. Grallert | M. Tschöp | M. Champy | J. Beckers | V. Gailus-Durner | J. Seong | L. Nutter | F. Bosch | H. Häring | T. Hough | M. Klingenspor | Nobuhiko Tanaka | M. Hrabě de Angelis | J. Rozman | A. Peter | B. Moore | H. Maier | F. Machicao | R. Sedláček | K. C. Kent Lloyd | Arthur L Beaudet | Fausto Machicao | Hans-Ulrich Häring | Christine Schütt | Birgit Rathkolb | Jan Rozman | Andreas Peter | Harald Staiger | B. Rathkolb | Fatima Bosch | Monja Willershäuser | R. Brommage | Matthias H Tschöp | Martin Hrabe de Angelis | Marie-France Champy | Tertius Hough | Luis Santos | Sapna Sharma | Ala Moshiri | A. Moshiri | Christopher J Lelliott | Lauryl M J Nutter | Manuela A Oestereicher | Christine Schütt | Stefanie Leuchtenberger | Sapna Sharma | Martin Kistler | Robert Brommage | Lynette R Bower | David West | Glauco P Tocchini-Valentini | Robert B Braun | Michael S Dobbie | Xiang Gao | Nobuhiko Tanaka | Chi-Kuang Leo Wang | Mark Moore | Steve D Brown | H. Staiger | M. Dobbie | M. Willershäuser | S. Leuchtenberger | M. Kistler | C. Wang | Robert B. Braun | H. Haselimashhadi | Luis A. Santos | Manuela A. Oestereicher

[1]  T. Kadowaki,et al.  Genes associated with diabetes: potential for novel therapeutic targets? , 2016, Expert opinion on therapeutic targets.

[2]  Zheng Li,et al.  Age–dependent regulation of synaptic connections by dopamine D2 receptors , 2013, Nature Neuroscience.

[3]  M. Fornage,et al.  Association of a 62 Variants Type 2 Diabetes Genetic Risk Score With Markers of Subclinical Atherosclerosis: A Transethnic, Multicenter Study , 2015, Circulation. Cardiovascular genetics.

[4]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[5]  Tsippi Iny Stein,et al.  The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses , 2016, Current protocols in bioinformatics.

[6]  Monjur Ahmed,et al.  Non-alcoholic fatty liver disease in 2015. , 2015, World journal of hepatology.

[7]  Matthias Frisch,et al.  LitInspector: literature and signal transduction pathway mining in PubMed abstracts , 2009, Nucleic Acids Res..

[8]  F. Schick,et al.  Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat , 2005, Diabetologia.

[9]  Julius O. B. Jacobsen,et al.  A mouse informatics platform for phenotypic and translational discovery , 2015, Mammalian Genome.

[10]  Peer Bork,et al.  iPath2.0: interactive pathway explorer , 2011, Nucleic Acids Res..

[11]  P. Froguel,et al.  Rare and common genetic events in type 2 diabetes: what should biologists know? , 2015, Cell metabolism.

[12]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[13]  Lynne Pearce,et al.  Non-alcoholic fatty liver disease. , 2016, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[14]  D. Rothenbacher,et al.  Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany - a retrospective cohort and case control study in claims data of a large statutory health insurance , 2015, BMC Public Health.

[15]  W C Willett,et al.  Adjustment for total energy intake in epidemiologic studies. , 1997, The American journal of clinical nutrition.

[16]  Tom R. Gaunt,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[17]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[18]  Werner Müller,et al.  Introducing the German Mouse Clinic: open access platform for standardized phenotyping , 2005, Nature Methods.

[19]  C. Thummel,et al.  Epigenetic inheritance of metabolic state. , 2014, Current opinion in genetics & development.

[20]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[21]  Christian Gieger,et al.  Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways , 2010, Diabetes.

[22]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[23]  Steve D. M. Brown,et al.  Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium , 2017, Nature Genetics.

[24]  Eric Boerwinkle,et al.  Pleiotropic genes for metabolic syndrome and inflammation. , 2014, Molecular genetics and metabolism.

[25]  R. Corcoy Comment on: Soranzo et al. Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes 2010;59:3229–3239 , 2011, Diabetes.

[26]  István A. Kovács,et al.  Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders , 2015, Cell.

[27]  D. Powell,et al.  High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes , 2014, Bone Research.

[28]  Steve D. M. Brown,et al.  Applying the ARRIVE Guidelines to an In Vivo Database , 2015, PLoS biology.

[29]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[30]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[31]  Steve D. M. Brown,et al.  The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping , 2012, Mammalian Genome.

[32]  D. Glahn,et al.  Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families , 2016, Clinical Epigenetics.

[33]  J. Zicha,et al.  Epigenetics and a new look on metabolic syndrome. , 2015, Physiological research.

[34]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[35]  John M. Hancock,et al.  EuroPhenome and EMPReSS: online mouse phenotyping resource , 2008 .

[36]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[37]  Henrik Westerberg,et al.  Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics , 2015, Nature Genetics.

[38]  Steve D. M. Brown,et al.  Prevalence of sexual dimorphism in mammalian phenotypic traits , 2017, Nature Communications.

[39]  Steve D. M. Brown,et al.  A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction , 2017, Nature Communications.

[40]  J. Hirschhorn,et al.  Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI. , 2012, Human molecular genetics.

[41]  Gretchen A. Stevens,et al.  National, regional, and global trends in adult overweight and obesity prevalences , 2012, Population Health Metrics.

[42]  M. Kas,et al.  The preclinical data forum network: A new ECNP initiative to improve data quality and robustness for (preclinical) neuroscience , 2015, European Neuropsychopharmacology.

[43]  Gabi Kastenmüller,et al.  SNiPA: an interactive, genetic variant-centered annotation browser , 2014, Bioinform..

[44]  H. Darwish,et al.  Diabetes mellitus: The epidemic of the century. , 2015, World journal of diabetes.

[45]  A. Hattersley,et al.  Precision diabetes: learning from monogenic diabetes , 2017, Diabetologia.

[46]  N. Wareham,et al.  Epidemiology of diabetes , 2014, Medicine.

[47]  Yoav Gilad,et al.  Sex-specific genetic architecture of human disease , 2008, Nature Reviews Genetics.

[48]  F. Middleton,et al.  A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples , 2016, Molecular Psychiatry.

[49]  Kasper Lage,et al.  Pervasive Sharing of Genetic Effects in Autoimmune Disease , 2011, PLoS genetics.

[50]  Ramin Homayouni,et al.  Functionally Enigmatic Genes: A Case Study of the Brain Ignorome , 2014, PloS one.

[51]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.