Microstructure evolution and mechanical properties of Nb–Si based alloy processed by electromagnetic cold crucible directional solidification

[1]  L. Jia,et al.  Eutectic formation during directional solidification: Effect of the withdrawal rate , 2013 .

[2]  Donald R. Askeland,et al.  Essentials of Materials Science and Engineering , 2013 .

[3]  Ruirun Chen,et al.  Influence of oxygen on microstructure and mechanical properties of directionally solidified Ti–47Al–2Cr–2Nb alloy , 2012 .

[4]  L. Jia,et al.  The microstructure optimizing of the Nb–14Si–22Ti–4Cr–2Al–2Hf alloy processed by directional solidification , 2012 .

[5]  Ruirun Chen,et al.  Microstructural control and mechanical properties of Ti–47Al–2Cr–2Nb alloy by directional solidification electromagnetic cold crucible technique , 2012 .

[6]  H. Ding,et al.  Solidification structure analysis of cold crucible directionally solidified Nb-Si based alloy , 2012 .

[7]  K. Chattopadhyay,et al.  Effect of Gallium on microstructure and mechanical properties of Nb–Si eutectic alloy , 2011 .

[8]  Hu Zhang,et al.  Mechanical properties of directionally solidified Nb–Mo–Si-based alloys with aligned Nbss/Nb5Si3 lamellar structure , 2011 .

[9]  Hu Zhang,et al.  Ultrahigh-temperature Nbss/Nb5Si3 fully-lamellar microstructure developed by directional solidification in OFZ furnace , 2011 .

[10]  Haisheng Guo,et al.  Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb–Ti–Si based ultrahigh temperature alloy , 2011 .

[11]  G. Cheng,et al.  Microstructure evolution and room temperature deformation of a unidirectionally solidified Nb-22Ti-16Si-3Ta-2Hf-7Cr-3Al-0.2Ho (at.%) alloy , 2011 .

[12]  Shusuo Li,et al.  EFFECT OF Si ON MICROSTRUCTURE AND FRACTURE TOUGHNESS OF DIRECTIONALLY SOLIDIFIED Nb SILICIDE ALLOYS , 2010 .

[13]  P.Guan DIRECTIONALLY SOLIDIFIED MICROSTRUCTURE OF AN ULTRA-HIGH TEMPERATURE Nb-Si-Ti-Hf-Cr-Al ALLOY , 2009 .

[14]  Yuan Tian,et al.  Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy , 2009 .

[15]  Ying Yang,et al.  Experimental study of the liquid–solid phase equilibria at the metal-rich region of the Nb–Cr–Si system , 2009 .

[16]  Y. Kimura,et al.  Effect of Growth Rate on Microstructure and Microstructure Evolution of Directionally Solidified Nb-Si Alloys , 2008 .

[17]  Z. Li,et al.  Microstructural and mechanical characterization of Nb-based in situ composites from Nb-Si-Ti ternary system , 2007 .

[18]  Y. Kimura,et al.  Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys , 2006 .

[19]  R. Tanaka,et al.  Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb–Mo–Si and Nb–W–Si systems , 2004 .

[20]  Won-Yong Kim,et al.  Effect of V addition on microstructure and mechanical property in the Nb–Si alloy system , 2004 .

[21]  B. Bewlay,et al.  A review of very-high-temperature Nb-silicide-based composites , 2003 .

[22]  J. Lewandowski,et al.  Ultrahigh-Temperature Nb-Silicide-Based Composites , 2003 .

[23]  S. Hanada,et al.  Mechanical properties of As-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures , 2003 .

[24]  Won-Yong Kim,et al.  Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites , 2001 .

[25]  B. Bewlay,et al.  The Nb-Ti-Si ternary phase diagram: Determination of solid-state phase equilibria in Nb- and Ti-rich alloys , 1998 .

[26]  B. Bewlay,et al.  The Nb-Ti-Si ternary phase diagram: Evaluation of liquid- solid phase equilibria in Nb-and Ti-rich alloys , 1997 .

[27]  B. Bewlay,et al.  The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-basedIn Situ composite , 1996 .