Accurate Collaborative Globally-Referenced Digital Mapping with Standard GNSS

Exchange of location and sensor data among connected and automated vehicles will demand accurate global referencing of the digital maps currently being developed to aid positioning for automated driving. This paper explores the limit of such maps’ globally-referenced position accuracy when the mapping agents are equipped with low-cost Global Navigation Satellite System (GNSS) receivers performing standard code-phase-based navigation, and presents a globally-referenced electro-optical simultaneous localization and mapping pipeline, called GEOSLAM, designed to achieve this limit. The key accuracy-limiting factor is shown to be the asymptotic average of the error sources that impair standard GNSS positioning. Asymptotic statistics of each GNSS error source are analyzed through both simulation and empirical data to show that sub-50-cm accurate digital mapping is feasible in the horizontal plane after multiple mapping sessions with standard GNSS, but larger biases persist in the vertical direction. GEOSLAM achieves this accuracy by (i) incorporating standard GNSS position estimates in the visual SLAM framework, (ii) merging digital maps from multiple mapping sessions, and (iii) jointly optimizing structure and motion with respect to time-separated GNSS measurements.

[1]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[2]  Gamini Dissanayake,et al.  Vision Aided GPS/INS System for Robust Land Vehicle Navigation , 2009 .

[3]  Tao Guo,et al.  Towards high accuracy road maps generation from massive GPS Traces data , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[4]  P. Bonnifait,et al.  Characterization of GPS multipath for passenger vehicles across urban environments , 2009 .

[5]  Kenneth M. Pesyna Advanced techniques for centimeter-accurate GNSS positioning on low-cost mobile platforms , 2015 .

[6]  Wolfram Burgard,et al.  Map-Based Precision Vehicle Localization in Urban Environments , 2008 .

[7]  Salah Sukkarieh,et al.  A comparison of feature and pose-based mapping using vision, inertial and GPS on a UAV , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  R. Albrecht,et al.  Ein Verfahren zur Identifizierung von Zeichen, deren Wiedergabe stationären statischen Störungen unterworfen ist , 2005, Computing.

[9]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[10]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[11]  Sebastian Thrun,et al.  Robust vehicle localization in urban environments using probabilistic maps , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  Seth Rogers,et al.  Creating and evaluating highly accurate maps with probe vehicles , 2000, ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493).

[13]  Todd E. Humphreys,et al.  Low-cost precise vehicular positioning in urban environments , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[14]  Kurt Konolige,et al.  Double window optimisation for constant time visual SLAM , 2011, 2011 International Conference on Computer Vision.

[15]  Michael Felux,et al.  Evaluation of GPS L5 and Galileo E1 and E5a Performance for Future Multi Frequency and Multi Constellation GBAS , 2015 .

[16]  Laurent Kneip,et al.  Collaborative monocular SLAM with multiple Micro Aerial Vehicles , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Michael Bosse,et al.  Summary Maps for Lifelong Visual Localization , 2016, J. Field Robotics.

[18]  Julien Marzat,et al.  Collaborative localization and formation flying using distributed stereo-vision , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Victor L. Knoop,et al.  Lane Determination With GPS Precise Point Positioning , 2017, IEEE Transactions on Intelligent Transportation Systems.

[20]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[21]  Christian Tiberius,et al.  Real-time single-frequency precise point positioning: accuracy assessment , 2012, GPS Solutions.

[22]  Robert W. Heath,et al.  Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing , 2016, IEEE Communications Magazine.

[23]  Christian Tiberius,et al.  Single-frequency precise point positioning with optimal filtering , 2006 .

[24]  Jonas Nygårds,et al.  C-SAM: Multi-Robot SLAM using square root information smoothing , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[26]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[27]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[28]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[29]  Nathan Michael,et al.  Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[30]  Maxime Lhuillier Incremental Fusion of Structure-from-Motion and GPS Using Constrained Bundle Adjustments , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Danping Zou,et al.  CoSLAM: Collaborative Visual SLAM in Dynamic Environments , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Todd E. Humphreys,et al.  High-precision globally-referenced position and attitude via a fusion of visual SLAM, carrier-phase-based GPS, and inertial measurements , 2014, 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014.

[33]  Ravi Teja Sukhavasi,et al.  An end-to-end system for crowdsourced 3D maps for autonomous vehicles: The mapping component , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  C. Ellum INTEGRATION OF RAW GPS MEASUREMENTS INTO A BUNDLE ADJUSTMENT , 2000 .

[35]  T. Kos,et al.  Effects of multipath reception on GPS positioning performance , 2010, Proceedings ELMAR-2010.

[36]  Andreas Lehner,et al.  A novel channel model for land mobile satellite navigation , 2005 .

[37]  Fredrik Tufvesson,et al.  5G mmWave Positioning for Vehicular Networks , 2017, IEEE Wireless Communications.

[38]  Michael Trentini,et al.  Multiple‐Robot Simultaneous Localization and Mapping: A Review , 2016, J. Field Robotics.

[39]  Yidong Lou,et al.  An improved approach to model ionospheric delays for single-frequency Precise Point Positioning , 2012 .

[40]  E. Glenn Lightsey,et al.  Demonstration of a Space Capable Miniature Dual Frequency GNSS Receiver , 2014 .

[41]  Robert Weber,et al.  Development of an improved empirical model for slant delays in the troposphere (GPT2w) , 2015, GPS Solutions.

[42]  Bernhard Martin Aumayer Ultra-tightly Coupled Vision/GNSS for Automotive Applications , 2016 .

[43]  D. Odijk Fast precise GPS positioning in the presence of ionospheric delays , 2002 .

[44]  Mark G. Petovello,et al.  Measuring GNSS Multipath Distributions in Urban Canyon Environments , 2015, IEEE Transactions on Instrumentation and Measurement.

[45]  John B. Kenney,et al.  Dedicated Short-Range Communications (DSRC) Standards in the United States , 2011, Proceedings of the IEEE.

[46]  Dennis M. Akos,et al.  Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments , 2012, Sensors.

[47]  J. M. Juan,et al.  Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis , 2016, Journal of Geodesy.

[48]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[49]  Guillermo Gonzalez-Casado,et al.  A Worldwide Ionospheric Model for Fast Precise Point Positioning , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Mark L. Psiaki,et al.  Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation , 2005 .

[51]  Maxime Lhuillier Fusion of GPS and structure-from-motion using constrained bundle adjustments , 2011, CVPR 2011.

[52]  J. J. Hutton,et al.  CENTIMETER-LEVEL, ROBUST GNSS-AIDED INERTIAL POST-PROCESSING FOR MOBILE MAPPING WITHOUT LOCAL REFERENCE STATIONS , 2016 .

[53]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[54]  Wolfram Burgard,et al.  Fully distributed scalable smoothing and mapping with robust multi-robot data association , 2012, 2012 IEEE International Conference on Robotics and Automation.

[55]  Andrey Soloviev,et al.  Integration of GPS and vision measurements for navigation in GPS challenged environments , 2010, IEEE/ION Position, Location and Navigation Symposium.

[56]  Naokazu Yokoya,et al.  Extrinsic Camera Parameter Estimation Using Video Images and GPS Considering GPS Positioning Accuracy , 2010, 2010 20th International Conference on Pattern Recognition.