A Novel Cl− Inward-Rectifying Current in the Plasma Membrane of the Calcifying Marine Phytoplankton Coccolithus pelagicus 1

We investigated the membrane properties and dominant ionic conductances in the plasma membrane of the calcifying marine phytoplankton Coccolithus pelagicus using the patch-clamp technique. Whole-cell recordings obtained from decalcified cells revealed a dominant anion conductance in response to membrane hyperpolarization. Ion substitution showed that the anion channels were selective for Cl− and Br− over other anions, and the sensitivity to the stilbene derivative 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, ethacrynic acid, and Zn2+ revealed a pharmacological profile typical of many plant and animal anion channels. Voltage activation and kinetic characteristics of the C. pelagicusCl− channel are consistent with a novel function in plants as the inward rectifier that tightly regulates membrane potential. Membrane depolarization gave rise to nonselective cation currents and in some cases evoked action potential currents. We propose that these major ion conductances play an essential role in membrane voltage regulation that relates to the unique transport physiology of these calcifying phytoplankton.

[1]  V. Stein,et al.  Molecular structure and physiological function of chloride channels. , 2002, Physiological reviews.

[2]  K. Ryan,et al.  Calcification and inorganic carbon acquisition in coccolithophores. , 2002, Functional plant biology : FPB.

[3]  E. Paasche A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions , 2001 .

[4]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[5]  Ulf Riebesell,et al.  Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2 , 2001 .

[6]  M. Shono,et al.  Molecular cloning of Na(+)-ATPase cDNA from a marine alga, Heterosigma akashiwo. , 2001, Biochimica et biophysica acta.

[7]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[8]  H. Gimmler Primary sodium plasma membrane ATPases in salt-tolerant algae: facts and fictions. , 2000, Journal of experimental botany.

[9]  D. Gradmann,et al.  Three Types of Membrane Excitations in the Marine Diatom Coscinodiscus wailesii , 2000, The Journal of Membrane Biology.

[10]  C. Maurel,et al.  Anion channels in higher plants: functional characterization, molecular structure and physiological role. , 2000, Biochimica et biophysica acta.

[11]  J. Frachisse,et al.  Characterization of a nitrate-permeable channel able to mediate sustained anion efflux in hypocotyl cells from Arabidopsis thaliana. , 2000, The Plant journal : for cell and molecular biology.

[12]  U. Zimmermann,et al.  A Patch-Clamp Study of Ion Channels in Protoplasts Prepared from the Marine Alga Valonia utricularis , 1999, The Journal of Membrane Biology.

[13]  E. Buitenhuis,et al.  University of Groningen Photosynthesis and Calcification by Emiliania huxleyi (Prymnesiophyceae) as a Function of Inorganic Carbon Species Buitenhuis, , 1999 .

[14]  S. Thomine,et al.  Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. , 1999, Plant physiology.

[15]  B. Biskup,et al.  Calcium release from InsP3‐sensitive internal stores initiates action potential in Chara , 1999, FEBS letters.

[16]  D. Gradmann,et al.  Electrophysiology of the marine diatom Coscinodiscus wailesii II. Potassium currents , 1999 .

[17]  Johannes,et al.  Control of Cl- efflux in chara corallina by cytosolic pH, free ca2+, and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation , 1998, Plant physiology.

[18]  R. Hedrich,et al.  Anions permeate and gate GCAC1, a voltage‐dependent guard cell anion channel , 1998 .

[19]  K. Dietz,et al.  Na+‐ATPase from the plasma membrane of the marine alga Tetraselmis (Platymonas) viridis forms a phosphorylated intermediate , 1998, FEBS letters.

[20]  S. Thomine,et al.  Voltage-Dependent Anion Channel of Arabidopsis Hypocotyls: Nucleotide Regulation and Pharmacological Properties , 1997, The Journal of Membrane Biology.

[21]  G. Thiel,et al.  Ion channel activity during the action potential in Chara: new insights with new techniques. , 1997, Journal of experimental botany.

[22]  P. White Cation channels in the plasma membrane of rye roots. , 1997, Journal of experimental botany.

[23]  M. Tester,et al.  Calcium channels in higher plant cells: selectivity, regulation and pharmacology. , 1997, Journal of experimental botany.

[24]  Mark Hildebrand,et al.  A gene family of silicon transporters , 1997, Nature.

[25]  R. Hedrich,et al.  GCAC1 recognizes the pH gradient across the plasma membrane: a pH‐sensitive and ATP‐dependent anion channel links guard cell membrane potential to acid and energy metabolism , 1996 .

[26]  J. R. Wood,et al.  Spatial Organization of Calcium Signaling Involved in Cell Volume Control in the Fucus Rhizoid. , 1996, The Plant cell.

[27]  M. Wada,et al.  A Sodium Pump in the Plasma Membrane of the Marine Alga Heterosigma akashiwo , 1996 .

[28]  R. Hedrich,et al.  Malate‐sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration , 1994 .

[29]  K. Takeda,et al.  Hyperpolarization-activated inward chloride current in protoplasts from suspension-cultured carrot cells , 1994, Protoplasma.

[30]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[31]  H. Miedema,et al.  Simulation of the light-induced oscillations of the membrane potential in Potamogeton leaf cells , 1993, The Journal of Membrane Biology.

[32]  P. Hegemann,et al.  The Photoreceptor Current of the Green Alga Chlamydomonas , 1992 .

[33]  J. Schroeder,et al.  Two types of anion channel currents in guard cells with distinct voltage regulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Tyerman,et al.  Ion channels in the plasma membrane ofAmaranthus protoplasts: One cation and one anion channel dominate the conductance , 1991, The Journal of Membrane Biology.

[35]  Klaus Raschke,et al.  Voltage-dependent anion channels in the plasma membrane of guard cells , 1989, Nature.

[36]  M. Kennish,et al.  Practical Handbook of Marine Science , 1988 .

[37]  S. B. Parker,et al.  Mechanism of Calcification in the Marine Alga Emiliania huxleyi [and Discussion] , 1984 .

[38]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[39]  G. Schönknecht,et al.  Light-dependent signal transduction and transient changes in cytosolic Ca2+ in a unicellular green alga , 1998 .

[40]  G. Schonknecht Review article. Light-dependent signal transduction and transient changes in cytosolic Ca2+ in a unicellular green alga , 1998 .

[41]  E. Johannes,et al.  Control of Cl 2 Efflux in Chara corallina by Cytosolic pH, Free Ca 2 1 , and Phosphorylation Indicates a Role of Plasma Membrane Anion Channels in Cytosolic pH Regulation 1 , 1998 .

[42]  E. Volkenburgh,et al.  Kinetics of Ca2+- and ATP-dependent, voltage-controlled anion conductance in the plasma membrane of mesophyll cells of Pisum sativum , 1997, Planta.

[43]  T. Shimmen Studies on Mechano-Perception in Characeae: Effects of External Ca2+ and Cl− , 1997 .

[44]  R. Hedrich Chapter 1 Voltage-Dependent Chloride Channels in Plant Cells: Identification, Characterization, and Regulation of a Guard Cell Anion Channel , 1994 .