Bacterial Adhesins: Common Themes and Variations in Architecture and Assembly

Among the earliest events in many bacterial infections are the molecular interactions that occur between the pathogen and host cells. These interactions are typically required for extracellular colonization or internalization to occur and may involve a complex cascade of molecular cross talk at the

[1]  R. Möllby,et al.  OCCURRENCE OF P-FIMBRIATED ESCHERICHIA COLI IN URINARY TRACT INFECTIONS , 1981, The Lancet.

[2]  D. Kaiser,et al.  Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility , 1997, Journal of bacteriology.

[3]  F. Mooi,et al.  Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli. , 1991, Molecular microbiology.

[4]  S. Falkow,et al.  Frequency of gene sequences necessary for pyelonephritis-associated pili expression among isolates of Enterobacteriaceae from human extraintestinal infections , 1984, Infection and immunity.

[5]  Lee Makowski,et al.  Structural polymorphism of bacterial adhesion pili , 1995, Nature.

[6]  A. Labigne,et al.  Characterization of plasmid-borne afa-3 gene clusters encoding afimbrial adhesins expressed by Escherichia coli strains associated with intestinal or urinary tract infections , 1993, Infection and immunity.

[7]  H. Sakellaris,et al.  Assembly proteins of CS1 pili of enterotoxigenic Escherichia coli , 1996, Molecular microbiology.

[8]  T. Trust,et al.  Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis , 1991, Journal of bacteriology.

[9]  S. Hultgren,et al.  Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. , 1998, Science.

[10]  F. Lindberg,et al.  Horizontal gene transfer of the Escherichia coli pap and prs pili operons as a mechanism for the development of tissue‐specific adhesive properties , 1992, Molecular microbiology.

[11]  Z. Xu,et al.  Molecular dissection of PapD interaction with PapG reveals two chaperone‐binding sites , 1995, Molecular microbiology.

[12]  D. Portnoy,et al.  Molecular Genetics of Bacterial Pathogenesis , 1994 .

[13]  J. Nataro,et al.  A plasmid‐encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence , 1992, Molecular microbiology.

[14]  A. Pugsley Protein Traffic in Bacteria , 1998 .

[15]  M. Bhan,et al.  A new putative fimbrial colonization factor, CS19, of human enterotoxigenic Escherichia coli , 1997, Infection and immunity.

[16]  S. Hull,et al.  Adherence Mechanisms in Urinary Tract Infections , 1994 .

[17]  M. Friedrich,et al.  Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbriai biosynthetic genes , 1993, Molecular microbiology.

[18]  T. Bergfors,et al.  Structural basis of pilus subunit recognition by the PapD chaperone. , 1993, Science.

[19]  A. V. Karlyshev,et al.  A new gene of the ƒ1 operon of Y. pestis involved in the capsule biogenesis , 1992, FEBS letters.

[20]  D. Francis,et al.  Identification of two porcine brush border glycoproteins that bind the K88ac adhesin of Escherichia coli and correlation of these glycoproteins with the adhesive phenotype , 1992, Infection and immunity.

[21]  M. Wolf,et al.  Characterization of CS4 and CS6 antigenic components of PCF8775, a putative colonization factor complex from enterotoxigenic Escherichia coli E8775 , 1989, Infection and immunity.

[22]  S. Normark,et al.  Fibronectin binding mediated by a novel class of surface organelles on Escherichia coll , 1989, Nature.

[23]  A. Karakashian,et al.  CooC and CooD are required for assembly of CS1 pili , 1994, Molecular microbiology.

[24]  H. Mobley,et al.  Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection , 1991, Infection and immunity.

[25]  L. Björck,et al.  Assembly of human contact phase proteins and release of bradykinin at the surface of curli‐expressing Escherichia coli , 1996, Molecular microbiology.

[26]  Matthew Hobbs,et al.  Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein‐secretion apparatus: a general system for the formation of surface‐associated protein complexes , 1993, Molecular microbiology.

[27]  A. Karakashian,et al.  Genes for CS2 pili of enterotoxigenic Escherichia coli and their interchangeability with those for CS1 pili , 1995, Infection and immunity.

[28]  S. Hultgren,et al.  Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus , 1998, The EMBO journal.

[29]  C. Simmons,et al.  Identification and characterization of a K88- and CS31A-like operon of a rabbit enteropathogenic Escherichia coli strain which encodes fimbriae involved in the colonization of rabbit intestine , 1997, Infection and immunity.

[30]  M. Hibberd,et al.  Characterization of a putative colonization factor (PCFO166) of enterotoxigenic Escherichia coli of serogroup O166. , 1989, Journal of general microbiology.

[31]  M. Koomey,et al.  The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships--a review. , 1997, Gene.

[32]  J. Vandekerckhove,et al.  Characterization and purification of the F17 adhesin on the surface of bovine enteropathogenic and septicemic Escherichia coli. , 1988, American journal of veterinary research.

[33]  L. Makowski,et al.  Helical structure of P pili from Escherichia coli. Evidence from X-ray fiber diffraction and scanning transmission electron microscopy. , 1992, Journal of molecular biology.

[34]  J Hacker,et al.  Isolation and characterization of the alpha-sialyl-beta-2,3-galactosyl-specific adhesin from fimbriated Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Hultgren,et al.  Biogenesis of the bacterial pilus. , 1991, Current opinion in genetics & development.

[36]  G. Schoolnik,et al.  Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. , 1998, Science.

[37]  J. Tainer,et al.  Type-4 pilus-structure: outside to inside and top to bottom--a minireview. , 1997, Gene.

[38]  S. Normark,et al.  Expression of two csg operons is required for production of fibronectin‐ and Congo red‐binding curli polymers in Escherichia coli K‐12 , 1995, Molecular microbiology.

[39]  C. Locht,et al.  Common accessory genes for the Bordetella pertussis filamentous hemagglutinin and fimbriae share sequence similarities with the papC and papD gene families. , 1992, The EMBO journal.

[40]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.

[41]  S. Normark,et al.  Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli , 1997, The EMBO journal.

[42]  H. Leffler,et al.  Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes , 1980 .

[43]  D. Kaiser,et al.  Social gliding is correlated with the presence of pili in Myxococcus xanthus. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Hultgren,et al.  P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips , 1992, Nature.

[45]  J. Pinkner,et al.  FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Falkow,et al.  Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate , 1981, Infection and immunity.

[47]  J. Hacker,et al.  Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesion determinant: nucleotide sequence of the genes sfa B, C, D, E, F. , 1990, Microbial pathogenesis.

[48]  J. Nataro,et al.  Identification and characterization of a gene cluster mediating enteroaggregative Escherichia coli aggregative adherence fimbria I biogenesis , 1994, Journal of bacteriology.

[49]  W. Gaastra,et al.  The complete nucleotide sequence of region 1 of the CFA/I fimbrial operon of human enterotoxigenic Escherichia coli. , 1992, DNA sequence : the journal of DNA sequencing and mapping.

[50]  T. Silhavy,et al.  The chaperone‐assisted membrane release and folding pathway is sensed by two signal transduction systems , 1997, The EMBO journal.

[51]  Kayl,et al.  Characterization of three fimbrial genes, sefABC, of Salmonella enteritidis , 1993, Journal of bacteriology.

[52]  S. Hultgren,et al.  The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  T. Silhavy,et al.  The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. , 1997, Genes & development.

[54]  G. Boulnois,et al.  Genetic analysis of the gene cluster encoding nonfimbrial adhesin I from an Escherichia coli uropathogen , 1993, Infection and immunity.

[55]  H. Mobley,et al.  Proteus mirabilis fimbriae: N-terminal amino acid sequence of a major fimbrial subunit and nucleotide sequences of the genes from two strains , 1993, Infection and immunity.

[56]  K. Stone,et al.  Biogenesis of the bundle-forming pilus of enteropathogenic Escherichia coli: reconstitution of fimbriae in recombinant E. coli and role of DsbA in pilin stability--a review. , 1997, Gene.

[57]  J. R. Scott,et al.  CooB plays a chaperone-like role for the proteins involved in formation of CS1 pili of enterotoxigenic Escherichia coli. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  B. Rowe,et al.  The possession of three novel coli surface antigens by enterotoxigenic Escherichia coli strains positive for the putative colonization factor PCF8775. , 1985, Journal of general microbiology.

[59]  G. Cornelis,et al.  The Myf fibrillae of Yersinia enterocolitica , 1993, Molecular microbiology.

[60]  E.E. Galyov,et al.  Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone protein PapD of Escherichia coli , 1991, FEBS letters.

[61]  S. Normark,et al.  Host‐specificity of uropathogenic Escherichia coli depends on differences in binding specificity to Gal alpha 1‐4Gal‐containing isoreceptors. , 1990, The EMBO journal.

[62]  J. Dankert,et al.  Blocking of fimbria-mediated adherence of Haemophilus influenzae by sialyl gangliosides , 1991, Infection and immunity.

[63]  F. Mooi,et al.  Construction and analysis of Bordetella pertussis mutants defective in the production of fimbriae. , 1992, Microbial pathogenesis.

[64]  S. Normark,et al.  Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin‐binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG , 1997, Molecular microbiology.

[65]  P. Klemm Fimbriae Adhesion, Genetics, Biogenesis, and Vaccines , 1994 .

[66]  D. Kaiser,et al.  The tgl gene: social motility and stimulation in Myxococcus xanthus , 1997, Journal of bacteriology.

[67]  T. Rudel,et al.  Neisseria PilC protein identified as type-4 pilus tip-located adhesin , 1995, Nature.

[68]  M. Fussenegger,et al.  Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. , 1997, Gene.

[69]  F. Heffron,et al.  Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium , 1995, Journal of bacteriology.

[70]  S. Clegg,et al.  Molecular characterization of the type 3 (MR/K) fimbriae of Klebsiella pneumoniae , 1988, Journal of bacteriology.

[71]  A. Fouet,et al.  Distinct control sites located upstream from the levansucrase gene of Bacillus subtilis , 1987, Molecular microbiology.

[72]  T. Read,et al.  Duplication of pilus gene complexes of Haemophilus influenzae biogroup aegyptius , 1996, Journal of bacteriology.

[73]  T. Meyer Variation of Pilin and Opacity-Associated Protein in Pathogenic Neisseria Species , 1990 .

[74]  R. Goldstein,et al.  Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers , 1995, Journal of bacteriology.

[75]  J. Pogliano,et al.  Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. , 1997, Genes & development.

[76]  A. Labigne,et al.  Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences , 1994, Journal of bacteriology.

[77]  J. Pinkner,et al.  Ramifications of kinetic partitioning on usher‐mediated pilus biogenesis , 1998, The EMBO journal.

[78]  M. Hibberd,et al.  Characterization of a new putative colonization factor (CS17) from a human enterotoxigenic Escherichia coli of serotype O114:H21 which produces only heat-labile enterotoxin. , 1990, The Journal of infectious diseases.

[79]  D. Watson,et al.  Proteus mirabilis ambient-temperature fimbriae: cloning and nucleotide sequence of the aft gene cluster , 1996, Infection and immunity.

[80]  S. Clegg,et al.  Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae , 1991, Journal of bacteriology.

[81]  F. Mooi,et al.  Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous haemagglutinin gene , 1992, Molecular microbiology.

[82]  J. Lowy,et al.  Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Normark,et al.  Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. , 1991, The EMBO journal.

[84]  J. Hacker,et al.  F1C fimbriae of a uropathogenic Escherichia coli strain: genetic and functional organization of the foc gene cluster and identification of minor subunits , 1990, Journal of bacteriology.

[85]  S. Normark,et al.  Uropathogenic, Escherichia coli can express serologically identical pili of different receptor binding specificities , 1988, Molecular microbiology.

[86]  D. Schifferli,et al.  Identification of major and minor chaperone proteins involved in the export of 987P fimbriae , 1996, Journal of bacteriology.

[87]  A. Olsén,et al.  Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue‐type plasminogen activator (t‐PA) , 1994, Molecular microbiology.

[88]  M. Koomey,et al.  The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae , 1995, Molecular microbiology.

[89]  C. Brinton The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. , 1965, Transactions of the New York Academy of Sciences.

[90]  F. Jacob-Dubuisson,et al.  Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[91]  S. Hultgren,et al.  Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli , 1995, Molecular microbiology.

[92]  F. Jacob-Dubuisson,et al.  Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. , 1993, The EMBO journal.

[93]  M. W. van der Woude,et al.  Epigenetic phase variation of the pap operon in Escherichia coli. , 1996, Trends in microbiology.

[94]  S. Hultgren,et al.  Chaperone-assisted assembly and molecular architecture of adhesive pili. , 1991, Annual review of microbiology.

[95]  J. Mattick,et al.  Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. , 1997, Gene.

[96]  J. Tommassen,et al.  Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase , 1992 .

[97]  G. Schoolnik,et al.  Cloning and characterization of the bundle‐forming pilin gene of enteropathogenic Escherichia coli and its distribution in Salmonella serotypes , 1993, Molecular microbiology.

[98]  P. Manning,et al.  Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: novel regulation of pilus production by bypassing an amber codon , 1989, Molecular microbiology.

[99]  M. Der Vartanian,et al.  CS31A, a new K88-related fimbrial antigen on bovine enterotoxigenic and septicemic Escherichia coli strains , 1988, Infection and immunity.

[100]  M. Levine,et al.  Coli surface antigens 1 and 3 of colonization factor antigen II-positive enterotoxigenic Escherichia coli: morphology, purification, and immune responses in humans , 1984, Infection and immunity.

[101]  M. Bayer,et al.  Ordered translocation of 987P fimbrial subunits through the outer membrane of Escherichia coli , 1995, Journal of bacteriology.

[102]  H. Mobley,et al.  Proteus mirabilis fimbriae: identification, isolation, and characterization of a new ambient-temperature fimbria , 1994, Infection and immunity.

[103]  F. Jacob-Dubuisson,et al.  PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Goldhar,et al.  Nonfimbrial, mannose-resistant adhesins from uropathogenic Escherichia coli O83:K1:H4 and O14:K?:H11 , 1987, Infection and immunity.

[105]  J. Kamerling,et al.  Isolation and structural characterization of the equine erythrocyte receptor for enterotoxigenic Escherichia coli K99 fimbrial adhesin , 1984, Infection and immunity.

[106]  K. Krogfelt,et al.  Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae , 1990, Infection and immunity.

[107]  A. Holmgren,et al.  Crystal structure of chaperone protein PapD reveals an immunoglobulin fold , 1989, Nature.

[108]  B. Rowe,et al.  Adhesion and ultrastructural properties of human enterotoxigenic Escherichia coli producing colonization factor antigens III and IV , 1989, Infection and immunity.

[109]  N. Sharon,et al.  Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors , 1977, Nature.

[110]  T. Trust,et al.  Type 1 fimbriae of Salmonella enteritidis , 1991, Journal of bacteriology.

[111]  E. Sokurenko,et al.  Functional heterogeneity of type 1 fimbriae of Escherichia coli , 1992, Infection and immunity.

[112]  T. Rudel,et al.  Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock‐out mutants , 1995, Molecular microbiology.

[113]  M. Koomey,et al.  PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high‐molecular‐mass multimer , 1997, Molecular microbiology.

[114]  J. Gilsdorf,et al.  Adherence of piliated Haemophilus influenzae type b to human oropharyngeal cells. , 1982, The Journal of infectious diseases.

[115]  J. Pinkner,et al.  Molecular basis of two subfamilies of immunoglobulin‐like chaperones. , 1996, The EMBO journal.

[116]  P. Hieter,et al.  Tetratrico peptide repeat interactions: to TPR or not to TPR? , 1995, Trends in biochemical sciences.

[117]  S. Lory,et al.  Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[118]  J. Tommassen,et al.  Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase , 1992, Molecular microbiology.

[119]  H. Hahn,et al.  The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. , 1997, Gene.

[120]  S. Normark,et al.  Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[121]  John A. Tainer,et al.  Structure of the fibre-forming protein pilin at 2.6 Å resolution , 1995, Nature.

[122]  C. Wandersman The general secretory pathway in bacteria. , 1993, Trends in microbiology.

[123]  B. Tall,et al.  Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages , 1993, Molecular microbiology.

[124]  C. Gross,et al.  The σE‐mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE , 1997, Molecular microbiology.