A search for disorder in the spin glass double perovskites Sr2CaReO6 and Sr2MgReO6 using neutron diffraction and neutron pair distribution function analysis

The geometrically frustrated, B-site ordered, S = 1/2, double perovskites Sr2CaReO6 and Sr2MgReO6, which show spin frozen magnetic ground states, have been investigated using neutron powder diffraction (ND) and neutron pair distribution function (NPDF) analysis in a search for evidence for atomic positional disorder. For both materials, data were taken above and below the spin freezing temperatures of ∼ 14 K and ∼ 45 K for the CaRe and MgRe phases, respectively. In both cases the fully B-site ordered model was in excellent agreement with the data, both ND and NPDF, at all temperatures studied. Thus, the structure of these materials, from the average and the local perspectives, is very well described by the fully B-site ordered model, which raises questions concerning the origin of the spin glass ground state. These results are compared with those for the spin glass pyrochlore Y2Mo2O7 and other B-site ordered double perovskites.

[1]  C. Bridges,et al.  Structure and magnetic properties of the S = 1 geometrically frustrated double perovskites La 2 LiReO 6 and Ba 2 YReO 6 , 2010 .

[2]  V. Michaelis,et al.  Magnetic properties of the geometrically frustrated S=(1)/(2) antiferromagnets, La 2 LiMoO 6 and Ba 2 YMoO 6 , with the B-site ordered double perovskite structure: Evidence for a collective spin-singlet ground state , 2010, 1001.1665.

[3]  M. Gingras,et al.  Magnetic Pyrochlore Oxides , 2009, 0906.3661.

[4]  V. Michaelis,et al.  Magnetic properties of the S = 3 2 geometrically frustrated double perovskites La 2 LiRuO 6 and Ba 2 YRuO 6 , 2009 .

[5]  A. D. Lozano-Gorrín,et al.  Local and average structures of the spin-glass pyrochlore Y2Mo2O7 from neutron diffraction and neutron pair distribution function analysis , 2009 .

[6]  W. Bisson,et al.  Anisotropy-driven spin glass transition in the kagome antiferromagnet hydronium jarosite, (H3O)Fe3(SO4)2(OH)6 , 2008 .

[7]  W. Kockelmann,et al.  Magnetic ground state of an experimental S=1/2 kagome antiferromagnet. , 2007, Physical review letters.

[8]  J. Trombe,et al.  (17) O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)(6)Cl(2). , 2007, Physical review letters.

[9]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Q. Huang,et al.  Quantum-spin-liquid states in the two-dimensional kagome antiferromagnets ZnxCu4-x(OD)6Cl2. , 2007, Nature materials.

[11]  D. Nocera,et al.  A structurally perfect S = (1/2) kagomé antiferromagnet. , 2005, Journal of the American Chemical Society.

[12]  J. Bouchaud,et al.  Transitions and Spin Dynamics at Very Low Temperature in the Pyrochlores Yb2Ti2O7 and Gd2Sn2O7 , 2003, cond-mat/0306470.

[13]  S. Billinge The atomic pair distribution function: past and present , 2004 .

[14]  A. Savici,et al.  Frustration-driven spin freezing in the S=1/2 fcc perovskite Sr 2 MgReO 6 , 2003 .

[15]  C. Grey,et al.  Structural chemistry and magnetic properties of La2LiRuO6 , 2003 .

[16]  P. Woodward,et al.  Ordered double perovskites -- a group-theoretical analysis. , 2003, Acta crystallographica. Section B, Structural science.

[17]  D. Nocera,et al.  Magnetism of pure iron jarosites , 2003 .

[18]  A. Cheetham,et al.  Building a high resolution total scattering powder diffractometer – upgrade of NPD at MLNSC , 2002 .

[19]  J. Gardner,et al.  Spin-glass behavior in the S = 1 / 2 fcc ordered perovskite Sr 2 CaReO 6 , 2002 .

[20]  Mark D. Smith,et al.  Crystal growth of Ba2MOsO6 (M=Li, Na) from reactive hydroxide fluxes , 2002 .

[21]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[22]  H. Okumura,et al.  Nature of spin freezing transition of geometrically frustrated pyrochlore system R2Ru2O7 (R=rare earth elements and Y) , 2001 .

[23]  M. Gingras,et al.  Thermodynamic and single-ion properties of Tb3+ within the collective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7 , 2000 .

[24]  A. Harrison,et al.  μSR studies of the kagomé antiferromagnet (H3O)Fe3(OH)6(SO4)2 , 2000 .

[25]  Ronald I. Smith,et al.  Magnetic properties of pure and diamagnetically doped jarosites: Model kagome antiferromagnets with variable coverage of the magnetic lattice , 2000 .

[26]  M. Itoh,et al.  Structure and magnetic properties of Sr2NiAO6 (A = W, Te) , 2000 .

[27]  K. H. Andersen,et al.  A polarised neutron scattering study of the magnetic correlations in the kagome antiferromagnet , 1999 .

[28]  R. Siddharthan,et al.  Zero-point entropy in ‘spin ice’ , 1999, Nature.

[29]  Y. Hinatsu,et al.  Magnetic Properties of Ruthenium Pyrochlores Y2Ru2O7and Lu2Ru2O7 , 1999 .

[30]  A. Harrison,et al.  Long-range order induced by diamagnetic dilution of jarosites, model Kagomé antiferromagnets , 1997 .

[31]  S. Bramwell,et al.  GEOMETRICAL FRUSTRATION IN THE FERROMAGNETIC PYROCHLORE HO2TI2O7 , 1997 .

[32]  M. Gingras,et al.  Static Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated Pyrochlore Antiferromagnet Y 2 Mo 2 O 7 , 1996, cond-mat/9611121.

[33]  T. Mason,et al.  Magnetic correlations in deuteronium jarosite, a model S = 5/2 Kagomé antiferromagnet , 1996, cond-mat/9607106.

[34]  A. Harrison,et al.  Structure and magnetism of hydronium jarosite, a model Kagomé antiferromagnet , 1996 .

[35]  I. Brown,et al.  The chemical bond and atomic displacements in SrTiO3 from X‐ray diffraction analysis , 1995 .

[36]  Mark T. Anderson,et al.  B-cation arrangements in double perovskites , 1993 .

[37]  Mason,et al.  Spin freezing in the geometrically frustrated pyrochlore antiferromagnet Tb2Mo2O7. , 1992, Physical review letters.

[38]  A. S. Cooper,et al.  Broken spin rotation symmetry without magnetic Bragg peaks in Kagomé antiferromagnets , 1990 .

[39]  J. N. Reimers,et al.  Short‐range ordering in a three‐dimensionally frustrated magnet, Tb2Mo2O7, by wide‐ and small‐angle neutron diffraction , 1990 .

[40]  N. Ali,et al.  Magnetic and electrical properties of R2Mo2O7 pyrochlore compounds , 1989 .

[41]  Mineo Sato,et al.  Magnetic properties and magnetic ordering in the rare earth molybdenum(IV) pyrochlores: R2Mo2O7 , 1986 .

[42]  J. Greedan,et al.  Spin-glass-like behavior in Y2Mo2O7, a concentrated, crystalline system with negligible apparent disorder , 1986 .

[43]  L. Soderholm,et al.  Ferromagnetic semiconductors: Magnetic properties of the pyrochlores, (YxLu1−x)2V2O7 and (ScxLu1−x)2V2O7 , 1979 .

[44]  G. Adachi,et al.  On the pyrochlore type Ln2V2O7 (Ln: Rare-earth elements) , 1977 .