Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models

We show how certain nonconvex optimization problems that arise in image processing and computer vision can be restated as convex minimization problems. This allows, in particular, the finding of global minimizers via standard convex minimization schemes.

[1]  W. Fleming,et al.  An integral formula for total gradient variation , 1960 .

[2]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[3]  G. Strang L1 and L∞ Approximation of Vector Fields in the Plane , 1983 .

[4]  Gilbert Strang,et al.  Maximal flow through a domain , 1983, Math. Program..

[5]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[6]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[7]  L. Evans Measure theory and fine properties of functions , 1992 .

[8]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[9]  Stefano Alliney,et al.  Digital filters as absolute norm regularizers , 1992, IEEE Trans. Signal Process..

[10]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[11]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[12]  Françoise Dibos,et al.  A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets , 1994, Proceedings of 1st International Conference on Image Processing.

[13]  Stefano Alliney,et al.  Recursive median filters of increasing order: a variational approach , 1996, IEEE Trans. Signal Process..

[14]  Stefano Alliney,et al.  A property of the minimum vectors of a regularizing functional defined by means of the absolute norm , 1997, IEEE Trans. Signal Process..

[15]  FRANÇOISE DIBOS,et al.  Global Total Variation Minimization , 1999, SIAM J. Numer. Anal..

[16]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[17]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[18]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[19]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[20]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[21]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[22]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[23]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[24]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[25]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..