Shape and Texture Indexes Application to Cell nuclei Classification

This paper describes the sequence of construction of a cell nuclei classification model by the analysis, the characterization and the classification of shape and texture. We describe first the elaboration of dedicated shape indexes and second the construction of the associated classification submodel. Then we present a new method of texture characterization, based on the construction and the analysis of statistical matrices encoding the texture. The various characterization techniques developed in this paper are systematically compared to previous approaches. In particular, we paid special attention to the results obtained by a versatile classification method using a large range of descriptors dedicated to the characterization of shapes and textures. Finally, the last classifier built with our methods achieved 88% of classification out of the 94% possible.

[1]  Mohammad Rahmati,et al.  Recognition of Persian handwritten digits using image profiles of multiple orientations , 2004, Pattern Recognit. Lett..

[2]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[3]  Adam Krzyzak,et al.  Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms , 2009, Pattern Recognit..

[4]  N. Japkowicz Learning from Imbalanced Data Sets: A Comparison of Various Strategies * , 2000 .

[5]  James F. Greenleaf,et al.  Use of gray value distribution of run lengths for texture analysis , 1990, Pattern Recognit. Lett..

[6]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[7]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[8]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[9]  Kidiyo Kpalma,et al.  Multiscale contour description for pattern recognition , 2006, Pattern Recognit. Lett..

[10]  Jean Sequeira,et al.  Poster: Classification of cell nuclei using shape and texture indexes , 2008, WSCG 2008.

[11]  Brijesh Verma,et al.  An investigation of the modified direction feature for cursive character recognition , 2007, Pattern Recognit..

[12]  Zhi-Hua Zhou,et al.  Exploratory Under-Sampling for Class-Imbalance Learning , 2006, ICDM.

[13]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[14]  G. N. Srinivasan,et al.  Statistical Texture Analysis , 2008 .

[15]  Mark S. Nixon,et al.  Statistical geometrical features for texture classification , 1995, Pattern Recognit..

[16]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[17]  Xiaoou Tang,et al.  Texture information in run-length matrices , 1998, IEEE Trans. Image Process..

[18]  Nadia Nouali-Taboudjemat,et al.  Morphological Description of Cervical Cell Images for the Pathological Recognition , 2007, WEC.

[19]  Laura Scott,et al.  Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome , 2003, Nature.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  L. Santaló Integral geometry and geometric probability , 1976 .

[22]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[23]  J. Berkson Application of the Logistic Function to Bio-Assay , 1944 .

[24]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[25]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[26]  Yali Amit,et al.  Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.

[27]  Jacob D. Furst,et al.  RUN-LENGTH ENCODING FOR VOLUMETRIC TEXTURE , 2004 .

[28]  Zhi-Hua Zhou,et al.  Projection functions for eye detection , 2004, Pattern Recognit..

[29]  L. F. Pau,et al.  Handbook of pattern recognition & computer vision , 1993 .

[30]  G. Y. Chen,et al.  Invariant Pattern Recognition using Dual-tree Complex Wavelets and Fourier Features , .

[31]  Jan Flusser,et al.  Affine moment invariants: a new tool for character recognition , 1994, Pattern Recognit. Lett..

[32]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[33]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[34]  Lior Shamir,et al.  WND-CHARM: Multi-purpose image classification using compound image transforms , 2008, Pattern Recognit. Lett..

[35]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[36]  Joydeep Ghosh,et al.  Generative Oversampling for Mining Imbalanced Datasets , 2007, DMIN.

[37]  Pierre Dardenne,et al.  Validation and verification of regression in small data sets , 1998 .

[38]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[39]  Robert M. Hawlick Statistical and Structural Approaches to Texture , 1979 .

[40]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[41]  M. Teague Image analysis via the general theory of moments , 1980 .

[42]  Anil K. Jain,et al.  Feature extraction methods for character recognition-A survey , 1996, Pattern Recognit..

[43]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[44]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[45]  Adel M. Alimi,et al.  Online Arabic handwriting recognition: a survey , 2013, International Journal on Document Analysis and Recognition (IJDAR).

[46]  Venu Govindaraju,et al.  Offline Arabic handwriting recognition: a survey , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Jan Flusser,et al.  Rotation Moment Invariants for Recognition of Symmetric Objects , 2006, IEEE Transactions on Image Processing.

[48]  Dengsheng Zhang,et al.  A comparative study on shape retrieval using Fourier descriptiors with different shape signatures , 2001 .

[49]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[50]  Paul Scheunders,et al.  Statistical texture characterization from discrete wavelet representations , 1999, IEEE Trans. Image Process..

[51]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[52]  Tieniu Tan,et al.  Brief review of invariant texture analysis methods , 2002, Pattern Recognit..

[53]  Jean-Luc Mari,et al.  APPROACHES DEDICATED TO THE MODELLING OF COMPLEX SHAPES APPLICATION TO MEDICAL DATA , 2004 .

[54]  Pierre Cau,et al.  Lamin A Truncation in Hutchinson-Gilford Progeria , 2003, Science.

[55]  Xin Jin,et al.  K-Means Clustering , 2010, Encyclopedia of Machine Learning.

[56]  Gilbert Ritschard,et al.  An asymmetric entropy measure for decision trees , 2006 .

[57]  B. K. Ghosh,et al.  A Comparison of Some Approximate Confidence Intervals for the Binomial Parameter , 1979 .

[58]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..