Tunable Anisotropic Photon Emission from Self-Organized CsPbBr3 Perovskite Nanocrystals.

We report controllable anisotropic light emission of photons originating from vertically aligned transition dipole moments in spun-cast films of CsPbBr3 nanocubes. By depositing films of nanocrystals on precoated substrates we can control the packing density and resultant radiation pattern of the emitted photons. We develop a technical framework to calculate the average orientation of light emitters, i.e., the angle between the transition dipole moment vector (TDM) and the substrate. This model is applicable to any emissive material with a known refractive index. Theoretical modeling indicates that oriented emission originates from an anisotropic alignment of the valence band and conduction band edge states on the ionic crystal lattice and demonstrates a general path to model the experimentally less accessible internal electric field of a nanosystem from the photoluminescent anisotropy. The uniquely accessible surface of the perovskite nanoparticles allows for perturbation of the normally isotropic emissive transition. The reported sensitive and tunable TDM orientation and control of emitted light will allow for applications of perovskite nanocrystals in a wide range of photonic technologies inaccessible to traditional light emitters.

[1]  Ruipeng Li,et al.  Nanocube Superlattices of Cesium Lead Bromide Perovskites and Pressure‐Induced Phase Transformations at Atomic and Mesoscale Levels , 2017, Advanced materials.

[2]  Joseph K. Gallaher,et al.  The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals , 2017 .

[3]  Uwe R. Kortshagen,et al.  Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots , 2017, Nature Photonics.

[4]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[5]  T. Chen,et al.  All-Inorganic Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[6]  I. Infante,et al.  Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals , 2016 .

[7]  Zhenyu Yang,et al.  Amine‐Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light‐Emitting Diodes , 2016 .

[8]  G. Gigli,et al.  The Bright Side of Perovskites. , 2016, The journal of physical chemistry letters.

[9]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[10]  O. Voznyy,et al.  Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. , 2016, ACS nano.

[11]  M. Kovalenko,et al.  Magnetic Manipulation of Spontaneous Emission from Inorganic CsPbBr3 Perovskites Nanocrystals , 2016 .

[12]  M. Kovalenko,et al.  Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes , 2016, Nano letters.

[13]  Oleksandr Voznyy,et al.  Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering , 2016, Advanced materials.

[14]  A Paul Alivisatos,et al.  Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. , 2016, ACS nano.

[15]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[16]  R. Camacho,et al.  Exploring the Electronic Band Structure of Organometal Halide Perovskite via Photoluminescence Anisotropy of Individual Nanocrystals. , 2016, Nano letters.

[17]  Aziz Genç,et al.  Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. , 2016, ACS applied materials & interfaces.

[18]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[19]  Hee Chang Yoon,et al.  Study of Perovskite QD Down-Converted LEDs and Six-Color White LEDs for Future Displays with Excellent Color Performance. , 2016, ACS applied materials & interfaces.

[20]  Huakang Yu,et al.  High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. , 2016, ACS nano.

[21]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[22]  Claudio Canale,et al.  Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range , 2016, Journal of the American Chemical Society.

[23]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[24]  Liberato Manna,et al.  Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs , 2016, Chemistry of materials : a publication of the American Chemical Society.

[25]  E. Sargent,et al.  Colloidal quantum dot ligand engineering for high performance solar cells , 2016 .

[26]  Richard L. Brutchey,et al.  On the crystal structure of colloidally prepared CsPbBr3 quantum dots. , 2016, Chemical communications.

[27]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[28]  Jang‐Joo Kim,et al.  Crystal Organic Light‐Emitting Diodes with Perfectly Oriented Non‐Doped Pt‐Based Emitting Layer , 2016, Advanced materials.

[29]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[30]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[31]  Rainer F. Mahrt,et al.  Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure , 2016, ACS nano.

[32]  Thomas Lampe,et al.  Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials. , 2016, Nature materials.

[33]  A Paul Alivisatos,et al.  Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. , 2015, Journal of the American Chemical Society.

[34]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[35]  Oleksandr Voznyy,et al.  Efficient Luminescence from Perovskite Quantum Dot Solids. , 2015, ACS applied materials & interfaces.

[36]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[37]  Tianquan Lian,et al.  Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. , 2015, Journal of the American Chemical Society.

[38]  Shaojun Guo,et al.  Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. , 2015, ACS nano.

[39]  N. Wang,et al.  Interfacial Control Toward Efficient and Low‐Voltage Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[40]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[41]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[42]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[43]  N. Koch,et al.  Voc from a Morphology Point of View: the Influence of Molecular Orientation on the Open Circuit Voltage of Organic Planar Heterojunction Solar Cells , 2014 .

[44]  E. Mosconi,et al.  First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. , 2014, The journal of physical chemistry letters.

[45]  Kwon-Hyeon Kim,et al.  Highly Efficient Organic Light‐Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments , 2014, Advanced materials.

[46]  G. Gigli,et al.  Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. , 2014, Nano letters.

[47]  Christian Mayr,et al.  Organic Light‐Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter , 2013 .

[48]  J. Kido,et al.  High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors , 2012 .

[49]  Yang Yang,et al.  Polarizing Organic Photovoltaics , 2011, Advanced materials.

[50]  Wolfgang Brütting,et al.  Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters , 2011 .

[51]  Byungki Kim,et al.  White‐Light‐Emitting Diodes with Quantum Dot Color Converters for Display Backlights , 2010, Advanced materials.

[52]  M. Dahan,et al.  Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface , 2005 .

[53]  L Coolen,et al.  Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. , 2004, Physical review letters.

[54]  Moungi G. Bawendi,et al.  Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[56]  H. Güdel,et al.  Synthesis, Crystal Structure, High-Resolution Optical Spectroscopy, and Extended Hückel Calculations on Cyclometalated [Re(CO)4(ppy)] (ppy = 2-Phenylpyridine) , 1997 .

[57]  Juan C. Scaiano,et al.  Modern Molecular Photochemistry of Organic Molecules , 1978 .