Scalar φ4 field theory for active-particle phase separation

[1]  Sergey Zelik,et al.  On a generalized Cahn-Hilliard equation with biological applications , 2014 .

[2]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[3]  A. Šarić,et al.  Anomalous thermomechanical properties of a self-propelled colloidal fluid. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  R. Winkler,et al.  Cooperative motion of active Brownian spheres in three-dimensional dense suspensions , 2013, 1308.6423.

[5]  S. Ramaswamy,et al.  Hydrodynamics of soft active matter , 2013 .

[6]  T. Speck,et al.  Microscopic theory for the phase separation of self-propelled repulsive disks , 2013, 1307.4908.

[7]  Adriano Tiribocchi,et al.  Continuum theory of phase separation kinetics for active Brownian particles. , 2013, Physical review letters.

[8]  Johan van de Koppel,et al.  Phase separation explains a new class of self-organized spatial patterns in ecological systems , 2013, Proceedings of the National Academy of Sciences.

[9]  Thomas Speck,et al.  Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. , 2013, Physical review letters.

[10]  David J. Pine,et al.  Living Crystals of Light-Activated Colloidal Surfers , 2013, Science.

[11]  M. Cates Complex Fluids: The Physics of Emulsions , 2012, 1209.2290.

[12]  H. H. Wensink,et al.  Meso-scale turbulence in living fluids , 2012, Proceedings of the National Academy of Sciences.

[13]  Michael F Hagan,et al.  Structure and dynamics of a phase-separating active colloidal fluid. , 2012, Physical review letters.

[14]  J. Tailleur,et al.  When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation , 2012, 1206.1805.

[15]  M E Cates,et al.  Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? , 2012, Reports on progress in physics. Physical Society.

[16]  M E Cates,et al.  Phase separation and rotor self-assembly in active particle suspensions , 2012, Proceedings of the National Academy of Sciences.

[17]  C. Ybert,et al.  Dynamic clustering in active colloidal suspensions with chemical signaling. , 2012, Physical review letters.

[18]  M Cristina Marchetti,et al.  Athermal phase separation of self-propelled particles with no alignment. , 2012, Physical review letters.

[19]  T. Hwa,et al.  Sequential Establishment of Stripe Patterns in an Expanding Cell Population , 2011, Science.

[20]  Stephan Herminghaus,et al.  Swarming behavior of simple model squirmers , 2011 .

[21]  Clemens Bechinger,et al.  Microswimmers in patterned environments , 2011, 1104.3203.

[22]  M. Cates,et al.  Lattice models of nonequilibrium bacterial dynamics , 2010, 1012.0786.

[23]  S. Ramaswamy The Mechanics and Statistics of Active Matter , 2010, 1004.1933.

[24]  Stephen J. Ebbens,et al.  In pursuit of propulsion at the nanoscale , 2010 .

[25]  M E Cates,et al.  Arrested phase separation in reproducing bacteria creates a generic route to pattern formation , 2010, Proceedings of the National Academy of Sciences.

[26]  M E Cates,et al.  Statistical mechanics of interacting run-and-tumble bacteria. , 2008, Physical review letters.

[27]  P. Olmsted Perspectives on shear banding in complex fluids , 2008 .

[28]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.

[29]  Scott A Norris,et al.  Scaling theory and morphometrics for a coarsening multiscale surface, via a principle of maximal dissipation. , 2006, Physical review letters.

[30]  Felix Otto,et al.  Coarsening dynamics of the convective Cahn-Hilliard equation , 2003 .

[31]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[32]  M. Cates,et al.  Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study , 2000, Journal of Fluid Mechanics.

[33]  M. Schnitzer,et al.  Theory of continuum random walks and application to chemotaxis. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  A. Bray Theory of phase-ordering kinetics , 1993, cond-mat/9501089.

[35]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[36]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[37]  D. Oxtoby,et al.  A molecular theory of the solid–liquid interface. II. Study of bcc crystal–melt interfaces , 1982 .

[38]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[39]  W. Ostwald,et al.  Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper , 1900 .

[40]  A. Bray Coarsening dynamics of nonequilibrium phase transitions , 2000 .

[41]  M. Cates,et al.  Soft and Fragile Matter , 2000 .

[42]  M. Evans,et al.  Soft and Fragile Matter : Nonequilibrium Dynamics, Metastability and Flow (PBK) , 2000 .

[43]  H. Risken Fokker-Planck Equation , 1984 .