Data-Driven Link Screening for Increasing Network Predictability

[1]  Huan Liu,et al.  Leveraging social media networks for classification , 2011, Data Mining and Knowledge Discovery.

[2]  Tuan Phan,et al.  Social Media-Driven Credit Scoring : the Predictive Value of Social Structures Research-in-Progress , 2016 .

[3]  Jure Leskovec,et al.  Predicting positive and negative links in online social networks , 2010, WWW '10.

[4]  Bart Baesens,et al.  Predicting interpurchase time in a retail environment using customer-product networks: An empirical study and evaluation , 2018, Expert Syst. Appl..

[5]  David Martens,et al.  Bankruptcy prediction for SMEs using relational data , 2017, Decis. Support Syst..

[6]  Tina Eliassi-Rad,et al.  Evaluating Statistical Tests for Within-Network Classifiers of Relational Data , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[7]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[8]  David Lazer,et al.  Inferring friendship network structure by using mobile phone data , 2009, Proceedings of the National Academy of Sciences.

[9]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[10]  Nitesh V. Chawla,et al.  New perspectives and methods in link prediction , 2010, KDD.

[11]  Foster Provost,et al.  A Simple Relational Classifier , 2003 .

[12]  Inbal Yahav,et al.  The Forest or the Trees? Tackling Simpson's Paradox with Classification Trees , 2018 .

[13]  Lada A. Adamic,et al.  How to search a social network , 2005, Soc. Networks.

[14]  Steven Skiena,et al.  Exact Age Prediction in Social Networks , 2015, WWW.

[15]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[16]  Trevor Hastie,et al.  Tree-Based Methods , 2021, Springer Texts in Statistics.

[17]  Bart Baesens,et al.  Social network analysis for customer churn prediction , 2014, Appl. Soft Comput..

[18]  Arun Sundararajan,et al.  Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks , 2009, Proceedings of the National Academy of Sciences.

[19]  Neha Mehra,et al.  Survey on Multiclass Classification Methods , 2013 .

[20]  Sougata Mukherjea,et al.  Social ties and their relevance to churn in mobile telecom networks , 2008, EDBT '08.

[21]  Xiaoying Bai,et al.  Data Driven Testing of Open Source Software , 2014, ISoLA.

[22]  Yung-Ming Li,et al.  A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship , 2013, Decis. Support Syst..

[23]  Alex Pentland,et al.  Composite Social Network for Predicting Mobile Apps Installation , 2011, AAAI.

[24]  Chris Volinsky,et al.  Network-Based Marketing: Identifying Likely Adopters Via Consumer Networks , 2006, math/0606278.

[25]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[26]  Galit Shmueli,et al.  To Explain or To Predict? , 2010, 1101.0891.

[27]  C. Tappert,et al.  A Survey of Binary Similarity and Distance Measures , 2010 .

[28]  Foster J. Provost,et al.  Classification in Networked Data: a Toolkit and a Univariate Case Study , 2007, J. Mach. Learn. Res..

[29]  D. Watts,et al.  Origins of Homophily in an Evolving Social Network1 , 2009, American Journal of Sociology.

[30]  Chris Volinsky,et al.  Building an Effective Representation for Dynamic Networks , 2005 .

[31]  Wolfgang Nejdl,et al.  Improving music genre classification using collaborative tagging data , 2009, WSDM '09.

[32]  Jean-Pierre Eckmann,et al.  Entropy of dialogues creates coherent structures in e-mail traffic. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Arun Sundararajan,et al.  Research Commentary - Information in Digital, Economic, and Social Networks , 2013, Inf. Syst. Res..

[34]  Tom Fawcett,et al.  Data science for business , 2013 .

[35]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[36]  Prabhudev Konana,et al.  Network Analysis of Search Dynamics: The Case of Stock Habitats , 2013, Manag. Sci..

[37]  Munmun De Choudhury,et al.  Inferring relevant social networks from interpersonal communication , 2010, WWW '10.

[38]  Foster J. Provost,et al.  Corporate residence fraud detection , 2014, KDD.

[39]  M. Sarvary,et al.  Network Effects and Personal Influences: The Diffusion of an Online Social Network , 2011 .

[40]  Jure Leskovec,et al.  Image Labeling on a Network: Using Social-Network Metadata for Image Classification , 2012, ECCV.

[41]  Charu C. Aggarwal,et al.  An Ensemble Approach to Link Prediction , 2017, IEEE Transactions on Knowledge and Data Engineering.

[42]  Vasant Dhar,et al.  Prediction in Economic Networks , 2014, Inf. Syst. Res..

[43]  P. Blau Inequality and Heterogeneity: A Primitive Theory of Social Structure , 1978 .

[44]  Bart Baesens,et al.  A comparative study of social network classifiers for predicting churn in the telecommunication industry , 2016, 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[45]  Xiaoying Bai,et al.  Risk Based Testing of Open Source Software (OSS) , 2014, 2014 IEEE 38th International Computer Software and Applications Conference Workshops.

[46]  Graham Cormode,et al.  Node Classification in Social Networks , 2011, Social Network Data Analytics.

[47]  Sofus A. Macskassy Improving Learning in Networked Data by Combining Explicit and Mined Links , 2007, AAAI.