Caspase independence of radio-induced cell death

[1]  L. Zitvogel,et al.  Apoptosis regulation in tetraploid cancer cells , 2006, The EMBO journal.

[2]  G. Kroemer,et al.  Redundant cell death mechanisms as relics and backups , 2005, Cell Death and Differentiation.

[3]  Giuseppe Schettino,et al.  New insights on cell death from radiation exposure. , 2005, The Lancet. Oncology.

[4]  Guido Kroemer,et al.  Caspase-independent cell death , 2005, Nature Medicine.

[5]  L. Attardi,et al.  The role of apoptosis in cancer development and treatment response , 2005, Nature Reviews Cancer.

[6]  G. Kroemer,et al.  Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope , 2005, The Journal of experimental medicine.

[7]  G. Kroemer,et al.  Preapoptotic Chromatin Condensation Upstream of the Mitochondrial Checkpoint* , 2004, Journal of Biological Chemistry.

[8]  S. Lowe,et al.  Intrinsic tumour suppression , 2004, Nature.

[9]  G. Kroemer,et al.  Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA , 2004, Oncogene.

[10]  Tak W. Mak,et al.  Pathways of apoptotic and non-apoptotic death in tumour cells , 2004, Nature Reviews Cancer.

[11]  D. Green,et al.  The Pathophysiology of Mitochondrial Cell Death , 2004, Science.

[12]  G. Kroemer,et al.  Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy , 2004, Oncogene.

[13]  G. Kroemer,et al.  The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe , 2004, Oncogene.

[14]  Guido Kroemer,et al.  Cell death by mitotic catastrophe: a molecular definition , 2004, Oncogene.

[15]  P. Krammer,et al.  Apoptosis in cancer--implications for therapy. , 2004, Seminars in oncology.

[16]  S. Korsmeyer,et al.  Review Cell Death: Critical Control Points Another Line of Evidence for the Importance of Caspases in Cell Death Came From , 2022 .

[17]  N. Méthot,et al.  Differential Efficacy of Caspase Inhibitors on Apoptosis Markers during Sepsis in Rats and Implication for Fractional Inhibition Requirements for Therapeutics , 2004, The Journal of experimental medicine.

[18]  Jerry M. Adams,et al.  Ways of dying: multiple pathways to apoptosis. , 2003, Genes & development.

[19]  Seng H. Cheng,et al.  Myocardial expression of baculoviral p35 alleviates doxorubicin-induced cardiomyopathy in rats. , 2003, Human gene therapy.

[20]  B. Vogelstein,et al.  The Chk2 Tumor Suppressor Is Not Required for p53 Responses in Human Cancer Cells* , 2003, Journal of Biological Chemistry.

[21]  C. Schmitt Senescence, apoptosis and therapy — cutting the lifelines of cancer , 2003, Nature Reviews Cancer.

[22]  A. Gudkov,et al.  The role of p53 in determining sensitivity to radiotherapy , 2003, Nature Reviews Cancer.

[23]  P. Krammer,et al.  Tumor Immunology , 2018, Medical Immunology.

[24]  G. Salvesen,et al.  Reprieval from execution: the molecular basis of caspase inhibition. , 2002, Trends in biochemical sciences.

[25]  I. Roninson,et al.  If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. , 2001, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[26]  K. Kinzler,et al.  Role of BAX in the apoptotic response to anticancer agents. , 2000, Science.

[27]  G. Kroemer,et al.  Apoptosis Control in Syncytia Induced by the HIV Type 1–Envelope Glycoprotein Complex , 2000, The Journal of experimental medicine.

[28]  M D Waters,et al.  IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. , 2000, Mutation research.

[29]  K. Kinzler,et al.  14-3-3σ is required to prevent mitotic catastrophe after DNA damage , 1999, Nature.

[30]  D. Bulavin,et al.  Deregulation of p53/p21Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after γ-irradiation , 1999, Oncogene.

[31]  E. Bernhard,et al.  How does radiation kill cells? , 1999, Current opinion in chemical biology.

[32]  D. Green,et al.  The central executioners of apoptosis: caspases or mitochondria? , 1998, Trends in cell biology.

[33]  M. Hiraoka,et al.  Simultaneous evaluation of radiation-induced apoptosis and micronuclei in five cell lines. , 1998, International journal of radiation biology.

[34]  G. Kroemer,et al.  The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death , 1997, Oncogene.

[35]  N. Kyprianou,et al.  bcl‐2 over‐expression delays radiation‐induced apoptosis without affecting the clonogenic survival of human prostate cancer cells , 1997, International journal of cancer.

[36]  C C Ling,et al.  Radiation-induced apoptosis: relevance to radiotherapy. , 1995, International journal of radiation oncology, biology, physics.

[37]  T. McMillan,et al.  Micronucleus formation in human tumour cells: lack of correlation with radiosensitivity. , 1993, British Journal of Cancer.

[38]  K. Held Radiation-induced apoptosis and its relationship to loss of clonogenic survival , 2004, Apoptosis.

[39]  C. Streffer,et al.  Correlation of radiation-induced micronucleus frequency with clonogenic survival in cells of one diploid and two tetraploid murine tumor cell lines of the same origin. , 1997, Radiation research.

[40]  Olive Pl,et al.  Apoptosis: an indicator of radiosensitivity in vitro ? , 1997 .

[41]  J. Hendry,et al.  Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. , 1997, International journal of radiation biology.