Latent Pronucleophiles in Lewis Base Catalysis: Enantioselective Allylation of Silyl Enol Ethers with Allylic Fluorides.

Lewis base catalyzed allylations of C-centered nucleophiles have been largely limited to the niche substrates with acidic C-H substituted for C-F bonds at the stabilized carbanionic carbon. Herein we report that the concept of latent pronucleophiles serves to overcome these limitations and allow for a variety of common stabilized C-nucleophiles, when they are introduced as the corresponding silylated compounds, to undergo enantioselective allylations using allylic fluorides. The reactions of silyl enol ethers afford the allylation products in good yields and with high degree of regio / stereoselectivity as well as diastereoselectivity when cyclic silyl enol ethers are used. Further examples of silylated stabilized carbon nucleophiles that undergo efficient allylation speak in favor of the general applicability of this concept to C-centered nucleophiles.