GALAXY FORMATION : CDM , FEEDBACK AND THE HUBBLE SEQUENCE

TreeSPH simulations of galaxy formation in a standard Λ cold dark matter cosmology, including star formation and the effects of energetic stellar feedback processes and of a metagalactic UV field, have been performed, resulting in a mix of realistic disk, lenticular, and elliptical galaxies at redshift z = 0. The disk galaxies are deficient in angular momentum by only about a factor of 2 compared with observed disk galaxies for simulations with fairly strong starbursts in early, protogalactic clouds, leading to "blow-away" of the remaining gas in the clouds. In this respect the present scenario is hence doing almost as well as the warm dark matter (WDM) scenarios discussed by Sommer-Larsen & Dolgov. The surface density profiles of the stellar disks are approximately exponential, and those of the bulges range from exponential to r1/4, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations, as are their integrated B-V colors, which have been calculated using stellar population synthesis techniques. Furthermore, the observed I-band Tully-Fisher relation can be matched, provided that the stellar mass-to-light ratio of disk galaxies is M/LI ~ 0.8, similar to what was found by Sommer-Larsen & Dolgov from their WDM simulations and in fair agreement with several recent observational determinations of M/LI for disk galaxies. The elliptical and lenticular galaxies have approximately r1/4 stellar surface density profiles, are dominated by nondisklike kinematics, and are flattened as a result of nonisotropic stellar velocity distributions, again consistent with observations. Hot halo gas is predicted to cool out and be accreted onto the Galactic disk at a rate of 0.5-1 M☉ yr-1 at z = 0, consistent with upper limits deduced from Far Ultraviolet Spectroscopic Explorer observations of O VI. We have analyzed in detail the formation history of two disk galaxies with circular speeds comparable to that of the Milky Way and find gas accretion rates, and hence bolometric X-ray luminosities of the halos, 6-7 times larger at z ~ 1 than at z = 0 for these disk galaxies. More generally, it is found that gas infall rates onto these disks are nearly exponentially declining with time, both for the total disk and for the "solar cylinder." This theoretical result hence supports the exponentially declining gas infall approximation often used in chemical evolution models. The infall timescales deduced are ~5-6 Gyr, comparable to what is adopted in current chemical evolution models to solve the "G dwarf problem." The disk of one of the two galaxies forms "inside-out," the other "outside-in," but in both cases the mean ages of the stars in the outskirts of the disks are ≳6-8 Gyr, fairly consistent with the findings of Ferguson & Johnson for the disk of M31. The amount of hot gas in disk galaxy halos is consistent with observational upper limits. The globular cluster M53 and the LMC are "inserted" in the halos of the two Milky Way-like disk galaxies, and dispersion measures to these objects are calculated. The results are consistent with upper limits from observed dispersion measures to pulsars in these systems. Finally, the results of the simulations indicate that the observed peak in the cosmic star formation rate at redshift z ~ 2 can be reproduced. Depending on the star formation and feedback scenarios, one predicts either a cosmic star formation rate that decreases monotonically with redshift beyond these redshifts or a second peak at z ~ 6-8, corresponding to the putative Population III and interestingly similar to recent estimates of the redshift at which the universe was reionized. These various scenarios should hence be observationally constrainable with upcoming instruments such as the James Webb Space Telescope and the Atacama Large Millimeter Array.

[1]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[2]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a ΛCDM Universe. III. The Dissipative Formation of an Elliptical Galaxy , 2003, astro-ph/0301224.

[3]  K. Cook,et al.  Line-driven winds , ionizing fluxes and UV-spectra of hot stars at extremely low metallicity . I . Very massive O-stars , 2003 .

[4]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[5]  B. Savage,et al.  Distribution and Kinematics of O VI in the Galactic Halo , 2002, astro-ph/0208140.

[6]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[7]  C. Chiappini,et al.  K dwarfs and the chemical evolution of the Solar cylinder , 2002, astro-ph/0206446.

[8]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[9]  R. Kudritzki Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.

[10]  F. Combes,et al.  Formation and evolution of galactic disks with a multiphase numerical model , 2002, astro-ph/0204240.

[11]  R. Webster,et al.  Dissecting a galaxy: mass distribution of 2237+0305 , 2002, astro-ph/0203196.

[12]  J. Kneib,et al.  A Redshift z = 6.56 Galaxy behind the Cluster Abell 370 , 2002, astro-ph/0203091.

[13]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[14]  J. Braine,et al.  The stellar mass to light ratio in the isolated spiral NGC 4414 , 2002, astro-ph/0202391.

[15]  Copenhagen,et al.  X-ray emission from haloes of simulated disc galaxies , 2002, astro-ph/0201529.

[16]  G. Carraro,et al.  Star formation and chemical evolution in smoothed particle hydrodynamics simulations: a statistical approach , 2001, astro-ph/0111084.

[17]  P. Coppi,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2001, astro-ph/0102503.

[18]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[19]  A. Ferguson,et al.  Constraints on Galaxy Formation from Stars in the Far Outer Disk of M31 , 2001, astro-ph/0108116.

[20]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[21]  S. Djorgovski,et al.  On the Threshold of the Reionization Epoch , 2001, astro-ph/0108069.

[22]  R. Thacker,et al.  Star Formation, Supernova Feedback, and the Angular Momentum Problem in Numerical Cold Dark Matter Cosmogony: Halfway There? , 2001, astro-ph/0106060.

[23]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[24]  J. Sommer-Larsen,et al.  Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum Problem , 1999, astro-ph/9912166.

[25]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[26]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[27]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[28]  R. Thacker,et al.  Implementing Feedback in Simulations of Galaxy Formation: A Survey of Methods , 2000, astro-ph/0001276.

[29]  M. Steinmetz,et al.  The Core Density of Dark Matter Halos: A Critical Challenge to the ΛCDM Paradigm? , 1999, astro-ph/9908114.

[30]  E. Tolstoy,et al.  The role of stellar feedback and dark matter in the evolution of dwarf galaxies , 1999, astro-ph/9905280.

[31]  P. T. de Zeeuw,et al.  Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way , 1999, Nature.

[32]  V. Eke,et al.  The cosmological dependence of galactic specific angular momenta , 1999, astro-ph/9908294.

[33]  Greg L. Bryan,et al.  Fluids in the universe: adaptive mesh refinement in cosmology , 1999, Comput. Sci. Eng..

[34]  France.,et al.  Chemo-spectrophotometric evolution of spiral galaxies — I. The model and the Milky Way , 1999, astro-ph/9902148.

[35]  N. Vogt,et al.  The Magnitude-Size Relation of Galaxies out to z ∼ 1 , 1999, astro-ph/9902147.

[36]  A. Fabian,et al.  ROSAT PSPC observations of 36 high‐luminosity clusters of galaxies: constraints on the gas fraction , 1999, astro-ph/9901304.

[37]  A. Helmi,et al.  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[38]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[39]  S. Gelato,et al.  Formation of Disk Galaxies: Feedback and the Angular Momentum Problem , 1998, astro-ph/9801094.

[40]  Gregory Bryan Computing in Science and Engineering , 1999, IEEE Software.

[41]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[42]  J. Silk,et al.  Star Formation and Chemical Evolution in the Milky Way: Cosmological Implications , 1998 .

[43]  S. Gelato,et al.  On DDO 154 and cold dark matter halo profiles , 1998, astro-ph/9806289.

[44]  N. Arimoto,et al.  Secondary episodes of star formation in elliptical galaxies , 1998, astro-ph/9806029.

[45]  F. V. D. Bosch The Formation of Disk-Bulge-Halo Systems and the Origin of the Hubble Sequence , 1998, astro-ph/9805113.

[46]  G. Efstathiou,et al.  Formation of disc galaxies , 1998, astro-ph/9802311.

[47]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[48]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[49]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[50]  U. Hellsten,et al.  On the global structure of self-gravitating discs for softened gravity , 1997, astro-ph/9707021.

[51]  M. Mori,et al.  The Evolution of Dwarf Galaxies with Star Formation in an Outward-propagating Supershell , 1997, astro-ph/9701052.

[52]  L. Costa,et al.  The i-band tully-fisher relation for cluster galaxies: a template relation, its scatter and bias corrections , 1996, astro-ph/9610118.

[53]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[54]  C. Flynn,et al.  Metallicities and kinematics of G and K dwarfs , 1996, astro-ph/9609017.

[55]  R. Kates,et al.  Hydrodynamical simulations of galaxy formation: effects of supernova feedback , 1996, astro-ph/9605182.

[56]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[57]  T. Beers,et al.  A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios , 1996, astro-ph/9610178.

[58]  U. Hellsten,et al.  The Structure of Isothermal, Self-Gravitating, Stationary Gas Spheres for Softened Gravity , 1996, astro-ph/9610085.

[59]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[60]  Matthias Steinmetz,et al.  The Effects of a Photoionizing Ultraviolet Background on the Formation of Disk Galaxies , 1996, astro-ph/9605043.

[61]  A. Bressan,et al.  Uncertainties in the Modeling of Old Stellar Populations , 1996 .

[62]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[63]  H. Rocha-Pinto,et al.  The metallicity distribution of G dwarfs in the solar neighbourhood , 1995, astro-ph/9510101.

[64]  J. Sommer-Larsen On the Star Formation Rate, Initial Mass Function, and Hubble Type of Disk Galaxies and the Age of the Universe , 1996 .

[65]  D. Balsara von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms , 1995 .

[66]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[67]  R. Wyse,et al.  Chemistry and Kinematics in the Solar Neighborhood: Implications for Stellar Populations and for Galaxy Evolution , 1995, astro-ph/9509007.

[68]  S. White,et al.  The Assembly of galaxies in a hierarchically clustering universe , 1994, astro-ph/9408067.

[69]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[70]  U. Hellsten,et al.  Formation of disc galaxies in the presence of a background UVX radiation field , 1994 .

[71]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[72]  F. Pearce,et al.  Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994, astro-ph/9409058.

[73]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[74]  M. S. Roberts,et al.  Physical Parameters Along the Hubble Sequence , 1994 .

[75]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[76]  James M. Cordes,et al.  Pulsar distances and the galactic distribution of free electrons , 1993 .

[77]  S. Holt,et al.  Back to the Galaxy , 1993 .

[78]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[79]  D. Mathewson,et al.  A southern sky survey of the peculiar velocities of 1355 spiral galaxies , 1992 .

[80]  Neal Katz,et al.  Dissipational galaxy formation. II - Effects of star formation , 1992 .

[81]  J. Navarro,et al.  Dynamics of Cooling Gas in Galactic Dark Halos , 1991 .

[82]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[83]  J. Sommer-Larsen The formation and chemical evolution of the Galactic disc , 1991 .

[84]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[85]  J. Peacock,et al.  Tidal torques and local density maxima , 1988 .

[86]  G. Efstathiou,et al.  Angular momentum from tidal torques , 1987 .

[87]  R. Chevalier,et al.  Highly ionized atoms in cooling gas , 1986 .

[88]  R. McCray,et al.  Supershells and propagating star formation , 1986 .

[89]  Ross D. Cohen,et al.  Damped Lyman-Alpha Absorption by Disk Galaxies with Large Redshifts. I. The Lick Survey , 1986 .

[90]  A. Renzini,et al.  Global properties of stellar populations and the spectral evolution of galaxies , 1986 .

[91]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[92]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[93]  J. Audouze Nucleosynthesis and Chemical Evolution of Galaxies , 1983 .

[94]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[95]  Lyman Spitzer,et al.  Physical processes in the interstellar medium , 1998 .

[96]  B. E. Patchett,et al.  Metal Abundances in Nearby Stars and the Chemical History of the Solar Neighbourhood , 1975 .

[97]  D. Lynden-Bell The chemical evolution of galaxies , 1975 .

[98]  R. Larson Infall of Matter in Galaxies , 1972, Nature.

[99]  M. Schmidt The Rate of Star Formation. II. The Rate of Formation of Stars of Different Mass. , 1963 .

[100]  S. van den Bergh,et al.  The frequency of stars with different metal abundances. , 1962 .