Molecular gas inflows and outflows in ultraluminous infrared galaxies at z ∼ 0.2 and one QSO at z = 6.1

Aims. Our aim is to search for and characterize inflows and outflows of molecular gas in four ultraluminous infrared galaxies (ULIRGs; LIR >  1012L⊙) at z ∼ 0.2−0.3 and one distant quasi-stellar object (QSO) at z = 6.13. Methods. We used Herschel/PACS and ALMA Band 7 observations of the hydroxyl molecule (OH) line at rest-frame wavelength 119 μm, which in absorption can provide unambiguous evidence of inflows or outflows of molecular gas in nuclear regions of galaxies. Our study contributes to doubling the number of OH 119 μm observations of luminous systems at z ∼ 0.2−0.3, and pushes the search for molecular outflows based on the OH 119 μm transition to z ∼ 6. Results. We detect OH 119 μm high-velocity absorption wings in three of the four ULIRGs. In two cases, IRAS F20036−1547 and IRAS F13352+6402, the blueshifted absorption profiles indicate the presence of powerful and fast (∼200−500 km s−1) molecular gas outflows. Consistent with an inside-out quenching scenario, these outflows are depleting the central reservoir of star-forming molecular gas at a rate similar to that of intense star formation activity. For the starburst-dominated system IRAS 10091+4704, we detect an inverted P Cygni profile that is unique among ULIRGs and indicates the presence of a fast (∼400 km s−1) inflow of molecular gas at a rate of ∼100 M⊙ yr−1 towards the central region. Finally, we tentatively detect (∼3σ) the OH 119 μm doublet in absorption in the z = 6.13 QSO ULAS J131911+095051. The OH 119 μm feature is blueshifted with a median velocity that suggests the presence of a molecular outflow, although characterized by a modest molecular mass loss rate of ∼200 M⊙ yr−1. This value is comparable to the small mass outflow rates found in the stacking of the [C II] spectra of other z ∼ 6 QSOs and suggests that ejective feedback in this phase of the evolution of ULAS J131911+095051 has subsided.

[1]  S. Veilleux,et al.  AGN feedback in a galaxy merger: multi-phase, galaxy-scale outflows with a fast molecular gas blob ∼6 kpc away from IRAS F08572+3915 , 2019, Astronomy & Astrophysics.

[2]  S. Veilleux,et al.  Molecular outflows in local galaxies: Method comparison and a role of intermittent AGN driving , 2019, Astronomy & Astrophysics.

[3]  F. Stanley,et al.  A spectral stacking analysis to search for faint outflow signatures in z ∼ 6 quasars , 2019, Astronomy & Astrophysics.

[4]  E. Bañados,et al.  ALMA and HST kiloparsec-scale imaging of a quasar-galaxy merger at $z\approx 6.2$. , 2019 .

[5]  Xiaohui Fan,et al.  ALMA and HST Kiloparsec-scale Imaging of a Quasar-galaxy Merger at Z ≈ 6.2 , 2019, The Astrophysical Journal.

[6]  S. Veilleux,et al.  Hidden or missing outflows in highly obscured galaxy nuclei? , 2019, Astronomy & Astrophysics.

[7]  A. Bolatto,et al.  Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at z ≈ 2 , 2018, The Astrophysical Journal.

[8]  R. Maiolino,et al.  Widespread QSO-driven outflows in the early Universe , 2018, Astronomy & Astrophysics.

[9]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[10]  D. P. Marrone,et al.  Fast molecular outflow from a dusty star-forming galaxy in the early Universe , 2018, Science.

[11]  S. Maddox,et al.  Far-infrared Herschel SPIRE spectroscopy of lensed starbursts reveals physical conditions of ionized gas , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  R. Maiolino,et al.  Cold Molecular Outflows in the Local Universe and Their Feedback Effect on Galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  H. Rix,et al.  An ALMA [C ii] Survey of 27 Quasars at z > 5.94 , 2018, The Astrophysical Journal.

[14]  Xiaohui Fan,et al.  Gas Dynamics of a Luminous z = 6.13 Quasar ULAS J1319+0950 Revealed by ALMA High-resolution Observations , 2017, The Astrophysical Journal.

[15]  A. Bolatto,et al.  Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow , 2017, 1706.00443.

[16]  H. Rix,et al.  Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6 , 2017, Nature.

[17]  R. Maiolino,et al.  AGN wind scaling relations and the co-evolution of black holes and galaxies , 2017, 1702.04507.

[18]  B. Weiner,et al.  PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions , 2017, 1702.01140.

[19]  S. Veilleux,et al.  Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis , 2016, 1612.08181.

[20]  Xiaohui Fan,et al.  PROBING THE INTERSTELLAR MEDIUM AND STAR FORMATION OF THE MOST LUMINOUS QUASAR AT z = 6.3 , 2016, 1606.09634.

[21]  S. Veilleux,et al.  THE SEARCH FOR MOLECULAR OUTFLOWS IN LOCAL VOLUME AGNs WITH HERSCHEL-PACS , 2016, 1605.06512.

[22]  S. Schulze,et al.  Searching for molecular outflows in hyperluminous infrared galaxies , 2016, 1605.05364.

[23]  P. Martini,et al.  THE MULTI-PHASE COLD FOUNTAIN IN M82 REVEALED BY A WIDE, SENSITIVE MAP OF THE MOLECULAR INTERSTELLAR MEDIUM , 2015 .

[24]  C. Frenk,et al.  Molecular hydrogen abundances of galaxies in the EAGLE simulations , 2015, 1503.04807.

[25]  A. Omont,et al.  STAR FORMATION RATE AND DYNAMICAL MASS OF 108 SOLAR MASS BLACK HOLE HOST GALAXIES AT REDSHIFT 6 , 2015, 1501.07538.

[26]  B. Weiner,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[27]  R. Neri,et al.  Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6 , 2014, 1409.4418.

[28]  D. Sijacki,et al.  Feedback from active galactic nuclei: energy- versus momentum-driving , 2014, Monthly Notices of the Royal Astronomical Society.

[29]  S. Nayakshin,et al.  Energy- and momentum-conserving AGN feedback outflows , 2014, 1403.3933.

[30]  M. Swinbank,et al.  Herschel reveals a molecular outflow in a z = 2.3 ULIRG , 2014, 1402.6320.

[31]  A. Bolatto,et al.  The rarity of dust in metal-poor galaxies , 2013, Nature.

[32]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[33]  F. Pozzi,et al.  The dust content of QSO hosts at high redshift , 2013, 1312.1087.

[34]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[35]  S. Veilleux,et al.  The Mrk 231 molecular outflow as seen in OH , 2013, 1310.3074.

[36]  S. Veilleux,et al.  FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL , 2013, 1308.3139.

[37]  J. Bernard-Salas,et al.  DIAGNOSTICS OF AGN-DRIVEN MOLECULAR OUTFLOWS IN ULIRGs FROM HERSCHEL-PACS OBSERVATIONS OF OH AT 119 μm , 2013, 1307.6224.

[38]  O. Ilbert,et al.  Connecting stellar mass and star-formation rate to dark matter halo mass out to z ∼ 2 , 2012, 1203.5828.

[39]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[40]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[41]  Buell T. Jannuzi,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. II. PROPERTIES OF WISE-SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BOÖTES FIELD , 2012, 1209.6055.

[42]  D. Stern,et al.  Using the Bright Ultrahard XMM-Newton survey to define an IR selection of luminous AGN based on WISE colours , 2012, 1208.2530.

[43]  A. Bolatto,et al.  DUST-TO-GAS RATIO IN THE EXTREMELY METAL-POOR GALAXY I Zw 18 , 2012, 1204.4745.

[44]  F. Walter,et al.  Evidence of strong quasar feedback in the early Universe , 2012, 1204.2904.

[45]  E. Quataert,et al.  The physics of galactic winds driven by active galactic nuclei , 2012, 1204.2547.

[46]  R. Davies,et al.  Herschel/PACS spectroscopy of NGC 4418 and Arp 220: H2O, H218O, OH, 18OH, O I, HCN, and NH3 , 2011, 1109.1118.

[47]  S. Veilleux,et al.  MASSIVE MOLECULAR OUTFLOWS AND NEGATIVE FEEDBACK IN ULIRGs OBSERVED BY HERSCHEL-PACS , 2011, 1105.1731.

[48]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[49]  R. Maiolino,et al.  Quasar feedback revealed by giant molecular outflows , 2010, 1006.1655.

[50]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[51]  Albrecht Poglitsch,et al.  Herschel-PACS spectroscopic diagnostics of local ULIRGs: conditions and kinematics in Markarian 231 , 2010, 1005.2213.

[52]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[53]  M. Salvati,et al.  The role of nuclear activity as the power source of ultraluminous infrared galaxies , 2010, 1003.0858.

[54]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[55]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[56]  F. Walter,et al.  IMAGING ATOMIC AND HIGHLY EXCITED MOLECULAR GAS IN a z = 6.42 QUASAR HOST GALAXY: COPIOUS FUEL FOR AN EDDINGTON-LIMITED STARBURST AT THE END OF COSMIC REIONIZATION , 2009, 0908.0018.

[57]  S. Veilleux,et al.  SPITZER QUASAR AND ULIRG EVOLUTION STUDY (QUEST). IV. COMPARISON OF 1 Jy ULTRALUMINOUS INFRARED GALAXIES WITH PALOMAR-GREEN QUASARS , 2009, 0905.1577.

[58]  M. Rowan-Robinson,et al.  The Imperial IRAS-FSC Redshift Catalogue , 2008, 0809.2016.

[59]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[60]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[61]  S. Veilleux,et al.  Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies , 2005, astro-ph/0507037.

[62]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.