Separable decompositions of bipartite mixed states

We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.

[1]  Ming Li,et al.  Quantum Separability Criteria for Arbitrary Dimensional Multipartite States , 2014, 1402.4428.

[2]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[3]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[4]  Jun-Li Li,et al.  A Necessary and Sufficient Criterion for the Separability of Quantum State , 2016, Scientific Reports.

[5]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[6]  Jun-Li Li,et al.  Entanglement classification of four-partite states under the SLOCC , 2017, 1701.04155.

[7]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[8]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[9]  W. Vogel,et al.  Necessary and sufficient conditions for bipartite entanglement , 2008, 0805.1318.

[10]  C. Loan The ubiquitous Kronecker product , 2000 .

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[13]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[16]  O. Guhne,et al.  Quantifying entanglement with covariance matrices , 2009, 0912.3018.

[17]  G. Kimura The Bloch Vector for N-Level Systems , 2003 .

[18]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[19]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[20]  Charles R. Johnson,et al.  Matrix Analysis: Preface to the Second Edition , 2012 .

[21]  O. Gühne,et al.  Covariance matrices and the separability problem. , 2006, Physical review letters.

[22]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[23]  Julio I. De Vicente,et al.  Separability criteria based on the bloch representation of density matrices , 2006, Quantum Inf. Comput..

[24]  S. Puntanen Inequalities: Theory of Majorization and Its Applications, Second Edition by Albert W. Marshall, Ingram Olkin, Barry C. Arnold , 2011 .

[25]  David Jennings,et al.  Quantum steering ellipsoids. , 2013, Physical review letters.