Neighbor sum distinguishing total coloring of graphs embedded in surfaces of nonnegative Euler characteristic

A total coloring of a graph $$G$$G is a coloring of its vertices and edges such that adjacent or incident vertices and edges are not colored with the same color. A total $$[k]$$[k]-coloring of a graph $$G$$G is a total coloring of $$G$$G by using the color set $$[k]=\{1,2,\ldots ,k\}$$[k]={1,2,…,k}. Let $$f(v)$$f(v) denote the sum of the colors of a vertex $$v$$v and the colors of all incident edges of $$v$$v. A total $$[k]$$[k]-neighbor sum distinguishing-coloring of $$G$$G is a total $$[k]$$[k]-coloring of $$G$$G such that for each edge $$uv\in E(G)$$uv∈E(G), $$f(u)\ne f(v)$$f(u)≠f(v). Let $$G$$G be a graph which can be embedded in a surface of nonnegative Euler characteristic. In this paper, it is proved that the total neighbor sum distinguishing chromatic number of $$G$$G is $$\Delta (G)+2$$Δ(G)+2 if $$\Delta (G)\ge 14$$Δ(G)≥14, where $$\Delta (G)$$Δ(G) is the maximum degree of $$G$$G.

[1]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree , 2014, Acta Mathematica Sinica, English Series.

[2]  Xuding Zhu,et al.  Total weight choosability of graphs , 2011, J. Graph Theory.

[3]  G. Wang,et al.  Neighbor sum distinguishing total colorings of K4-minor free graphs , 2013 .

[4]  Jakub PrzybyŁo Linear Bound on the Irregularity Strength and the Total Vertex Irregularity Strength of Graphs , 2008 .

[5]  Jakub Przybylo,et al.  Total Weight Choosability of Graphs , 2011, Electron. J. Comb..

[6]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[7]  Haiying Wang,et al.  On the adjacent vertex-distinguishing total chromatic numbers of the graphs with Δ (G) = 3 , 2007, J. Comb. Optim..

[8]  Xiangen Chen On the adjacent vertex distinguishing total coloring numbers of graphs with Delta=3 , 2008, Discret. Math..

[9]  GUANGHUI WANG,et al.  Neighbor Sum Distinguishing Coloring of some Graphs , 2012, Discret. Math. Algorithms Appl..

[10]  Jakub Przybylo,et al.  On a 1, 2 Conjecture , 2010, Discret. Math. Theor. Comput. Sci..

[11]  Mariusz Wozniak,et al.  On the Total-Neighbor-Distinguishing Index by Sums , 2015, Graphs Comb..

[12]  Aijun Dong,et al.  Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree , 2014 .

[13]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[14]  Jonathan Hulgan,et al.  Concise proofs for adjacent vertex-distinguishing total colorings , 2009, Discret. Math..

[15]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of planar graphs , 2015, J. Comb. Optim..

[16]  Guanghui Wang,et al.  An improved upper bound for the neighbor sum distinguishing index of graphs , 2014, Discret. Appl. Math..

[17]  Wei-Fan Wang,et al.  The adjacent vertex distinguishing total coloring of planar graphs , 2014, J. Comb. Optim..

[18]  Ben Seamone,et al.  The 1-2-3 Conjecture and related problems: a survey , 2012, ArXiv.

[19]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ , 2015, Discret. Appl. Math..

[20]  Guanghui Wang,et al.  Neighbor sum distinguishing index of planar graphs , 2014, Discret. Math..

[21]  Guanghui Wang,et al.  Neighbor Sum Distinguishing Edge Colorings of Graphs with Small Maximum Average Degree , 2016 .

[22]  Wei-Fan Wang,et al.  Adjacent vertex distinguishing total colorings of outerplanar graphs , 2010, J. Comb. Optim..

[23]  Jakub Przybylo,et al.  Irregularity Strength of Regular Graphs , 2008, Electron. J. Comb..

[24]  Yan Guiying,et al.  Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz , 2014 .

[25]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.

[26]  B. Yao,et al.  On adjacent-vertex-distinguishing total coloring of graphs , 2005 .

[27]  Po-Yi Huang,et al.  Weighted-1-antimagic graphs of prime power order , 2012, Discret. Math..

[28]  Xuding Zhu,et al.  Antimagic labelling of vertex weighted graphs , 2012, J. Graph Theory.

[29]  Huang DanJun,et al.  Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree , 2012 .