Thermodynamic optimization of the (Na2O + SiO2 + NaF + SiF4) reciprocal system using the Modified Quasichemical Model in the Quadruplet Approximation

Abstract All available thermodynamic and phase diagram data for the condensed phases of the ternary reciprocal system (NaF + SiF 4  + Na 2 O + SiO 2 ) have been critically assessed. Model parameters for the unary (SiF 4 ), the binary systems and the ternary reciprocal system have been found, which permit to reproduce the most reliable experimental data. The Modified Quasichemical Model in the Quadruplet Approximation was used for the oxyfluoride liquid solution, which exhibits strong first-nearest-neighbor and second-nearest-neighbor short-range ordering. This thermodynamic model takes into account both types of short-range ordering as well as the coupling between them. Model parameters have been estimated for the hypothetical high-temperature liquid SiF 4 .

[1]  D. R. Stull,et al.  Low-temperature heat capacities of 15 inorganic compounds , 1970 .

[2]  F. C. Kracek Phase Equilibrium Relations in the System, Na2SiO3-Li2SiO3-SiO2 , 1939 .

[3]  E. A. Porai-Koshits,et al.  Primary and secondary phase separation of sodium silicate glasses , 1968 .

[4]  F. Müller Thermochemical investigation of binary liquid mixtures in glass-forming oxide systems , 1994 .

[5]  K. Kawamura,et al.  29Si MAS NMR investigation of the Na2O-Al2O3-SiO2 glasses , 1991 .

[6]  A. K. Pant A reconsideration of the crystal structure of β-Na2Si2O5 , 1968 .

[7]  A. Pelton,et al.  Optimization of the Thermodynamic Properties and Phase Diagrams of the Na2O–SiO2 and K2O–SiO2 Systems , 1993 .

[8]  D. Cruickshank,et al.  A reinvestigation of the structure of sodium metasilicate, Na2SiO3 , 1967 .

[9]  A. Zaitsev,et al.  Thermodynamic properties and phase equilibria in the Na2O-SiO2 system , 1999 .

[10]  M. Pearce Solubility of Carbon Dioxide and Variation of Oxygen Ion Activity in Soda‐Silica Melts , 1964 .

[11]  D. Baker,et al.  Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: Stability of fluorine-bearing minerals in felsic igneous suites , 2004 .

[12]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[13]  M. Pearce Calculation of Oxygen Ion Activities in Sodium Silicate and Sodium Borate Melts , 1965 .

[14]  H. Itoh,et al.  Thermodynamic activity of Na2O in Na2O-SiO2-Al2O3 melt , 1984 .

[15]  R. Tischer Heat of Annealing in Simple Alkali Silicate Glasses , 1969 .

[16]  J. Stebbins Identification of multiple structural species in silicate glasses by 29Si NMR , 1987, Nature.

[17]  B. Mysen,et al.  Structure and properties of fluorine-bearing aluminosilicate melts: the system Na2O-Al2O3-SiO2-F at 1 atm , 1985 .

[18]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[19]  G. Hantke Die thermische Dissoziation einiger Silicofluoride , 1926 .

[20]  P. Richet,et al.  Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K , 1982 .

[21]  D. Baker,et al.  Thermodynamic modeling of melts in the system Na2O-NaAlO2-SiO2-F2O−1 , 2005 .

[22]  W. Roth,et al.  Beitrag zur Thermochemie der Kieselsäure und einiger Silikate , 1949 .

[23]  N. L. Bowen,et al.  The Binary System Sodium Metasilicate-Silica , 1923 .

[24]  Patrice Chartrand,et al.  The modified quasi-chemical model: Part II. Multicomponent solutions , 2001 .

[25]  C. Bergman,et al.  Excess thermodynamic functions in ternary Na2OK2OSiO2 melts by Knudsen cell mass spectrometry , 1987 .

[26]  D. Cruickshank,et al.  The crystal structure of a-Na2Si2O5 , 1968 .

[27]  D. Neudorf,et al.  Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C , 1980 .

[28]  Q. Zeng,et al.  Fluoride sites in aluminosilicate glasses: High-resolution 19F NMR results , 2000 .

[29]  F. D. Richardson,et al.  The behaviour of sulphur in silicate and aluminate melts , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  Q. Zeng,et al.  Cation ordering at fluoride sites in silicate glasses: a high-resolution 19F NMR study , 2000 .

[31]  J. D'ans,et al.  Untersuchungen im System Na2O-SiO2-ZrO2 , 1930 .

[32]  F. Tsukihashi,et al.  Measurement of the Activity of Na2O in Na2O-SiO2Melts by Chemical Equilibration Method , 1985 .

[33]  E. Renaud,et al.  Thermodynamic evaluation and optimization of the (LiF + NaF + KF + MgF2 + CaF2 + SrF2) system , 2009 .

[34]  T. Yokokawa,et al.  E.m.f. measurements of molten oxide mixtures III. Sodium oxide + silicon dioxide , 1979 .

[35]  J. Topping,et al.  Effect of Small Additions of Al2O3 and Ga2O3 on the Immiscibility Temperature of Na2O‐SiO2 Glasses , 1973 .

[36]  N. Eliezer,et al.  The enthalpy of sodium silicate glasses and liquids , 1979 .

[37]  Kenneth C. Mills,et al.  PHYSICAL PROPERTIES OF BOS SLAGS , 1987 .

[38]  J. Rogez,et al.  Enthalpie de Formation dans le Système Na2O-K2O-SiO2 , 1985 .

[39]  H. Booth,et al.  The Critical Constants and Vapor Pressures at High Pressure of Some Gaseous Fluorides of Group IV1 , 1935 .

[40]  Arthur D. Pelton,et al.  Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach—Application to silicate slags , 1986 .

[41]  N. McCready The thermodynamic properties of sodium silicate. , 1948, The Journal of physical and colloid chemistry.

[42]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases - recent developments , 2009 .

[43]  F. Glasser,et al.  Phase Relations in the System Na2Si2O5-SiO2 , 1965, Science.

[44]  A. Navrotsky,et al.  Direct Measurement of Relative Partial Molar Enthalpy of SiO2 in SiO2–M2O (M=Li, Na, K, Cs) Binary and SiO2–CaO–Al2O3 Ternary Melts , 2004 .

[45]  W. Haller,et al.  Miscibility Gaps in Alkali‐Silicate Binaries—Data and Thermodynamic Interpretation , 1974 .

[46]  R. Gruehn,et al.  Zum Modifikationswechsel von SiO2 in Gegenwart von Alkali-Fluoriden und -Silicaten† , 1984 .

[47]  G. Sigworth,et al.  Thermodynamic study of Na2O-SiO2 melts at 1300° and 1400 °C , 1985 .

[48]  P. Chiotti The pseudobinary system NaF-Na2SiF6 , 1981 .

[49]  E. S. Freeman,et al.  Thermoanalysis of Some Inorganic Fluorides and Silicofluorides. , 1964 .

[50]  Sosman Phases of silica , 1965 .

[51]  V. Deshpande Thermal expansion of sodium fluoride and sodium bromide , 1961 .

[52]  T. Yagi,et al.  Form of fluorine in Na2O-NaF-SiO2 slags determined by infrared spectroscopy , 2003 .

[53]  P. Richet,et al.  Thermochemical Properties of Silicate Glasses and Liquids: A Review (Paper 5R0710) , 1986 .

[54]  E. A. Guggenheim The statistical mechanics of regular solutions , 1935 .

[55]  Gunnar Eriksson,et al.  The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation , 2001 .

[56]  B. F. Naylor High-temperature Heat Contents of Sodium Metasilicate and Sodium Disilicate1 , 1945 .

[57]  D. Sanders Influence of Po2 on Vaporization of Sodium Disilicate at 1345°C , 1979 .

[58]  P. G. Hill,et al.  A Fundamental Equation of State for Heavy Water , 1982 .

[59]  V. O. Altemose,et al.  Evaporation from binary glasses by high temperature mass spectrometry , 1980 .

[60]  P. Richet,et al.  Thermodynamic mixing properties of sodium silicate liquids and implications for liquid–liquid immiscibility , 2004 .

[61]  P. Chartrand,et al.  Thermodynamic evaluation and optimization of the Li, Na, K, Mg, Ca//F, Cl reciprocal system using the modified quasi-chemical model , 2001 .

[62]  Y. Sasaki,et al.  Structural Analysis of Molten Na2O-NaF-SiO2 System by Raman Spectroscopy and Molecular Dynamics Simulation , 2003 .

[63]  D. Gaskell,et al.  Cryoscopic studies in fluoride-oxide-silica systems: Part I. systems containing Li+, Na+ and K+ , 1976 .

[64]  K. Kelley The Specific Heats at Low Temperatures of Crystalline Ortho-, Meta-, and Disilicates of Sodium , 1939 .

[65]  David H. Templeton,et al.  The crystal structure of sodium fluorosilicate , 1964 .

[66]  E. L. Pace,et al.  THE THERMODYNAMIC PROPERTIES OF SILICON TETRAFLUORIDE FROM 15 K TO ITS TRIPLE POINT. THE ENTROPY FROM MOLECULAR AND SPECTROSCOPIC DATA , 1962 .

[67]  R. Kaindl,et al.  Structural studies on Na6Si8O19 { a monophyllosilicate with a new type of layered silicate anion , 2005 .

[68]  M. Tomozawa,et al.  Effect of Minor Third Components on Metastable Immiscibility Boundaries of Binary Glasses , 1973 .

[69]  F. C. Kracek The System Sodium Oxide-Silica , 1929 .

[70]  A. Zaitsev,et al.  Thermodynamics of Na2O-SiO2 melts , 2000 .

[71]  I. Barin Thermochemical data of pure substances , 1989 .

[72]  F. C. Kracek THE CRISTOBALITE LIQUIDUS IN THE ALKALI OXIDE-SILICA SYSTEMS AND THE HEAT OF FUSION OF CRISTOBALITE , 1930 .

[73]  D. A. Goganov,et al.  Chemically Heterogeneous Structure of Two-Component Sodium and Lithium Silicate Glasses , 1964 .

[74]  G. Cody,et al.  Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures 1 1 Associate editor: F. J. Ryerson , 2004 .

[75]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[76]  R. Berman,et al.  Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-Sio2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation , 1985 .

[77]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .