Track-before-detect labeled multi-bernoulli particle filter with label switching

This paper presents a multitarget tracking particle filter for general track-before-detect measurement models. The particle filter is presented in the random-finite-set framework and uses a labeled multi-Bernoulli approximation. I also present a label-switching improvement algorithm based on Markov-chain Monte Carlo methods that is expected to increase filter performance if targets are in close proximity for a sufficiently long time. The particle filter is tested in two challenging numerical examples.

[1]  Mark Coates,et al.  Computationally-Tractable Approximate PHD and CPHD Filters for Superpositional Sensors , 2013, IEEE Journal of Selected Topics in Signal Processing.

[2]  S. Godsill,et al.  Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Simon J. Godsill,et al.  Acoustic Source Localization and Tracking of a Time-Varying Number of Speakers , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[4]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[5]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[6]  Peter Willett,et al.  Set JPDA Filter for Multitarget Tracking , 2011, IEEE Transactions on Signal Processing.

[7]  Ángel F. García-Fernández,et al.  Explicit filtering equations for labelled random finite sets , 2015, 2015 International Conference on Control, Automation and Information Sciences (ICCAIS).

[8]  Bernard Kolman,et al.  Discrete Mathematical Structures , 1984 .

[9]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Jianyu Yang,et al.  A Computationally Efficient Particle Filter for Multitarget Tracking Using an Independence Approximation , 2013, IEEE Transactions on Signal Processing.

[11]  Y. Boers,et al.  Multitarget particle filter track before detect application , 2004 .

[12]  Yu Hen Hu,et al.  Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks , 2005, IEEE Transactions on Signal Processing.

[13]  Peter Willett,et al.  Shooting two birds with two bullets: How to find Minimum Mean OSPA estimates , 2010, 2010 13th International Conference on Information Fusion.

[14]  Ángel F. García-Fernández,et al.  Generalizations of the auxiliary particle filter for multiple target tracking , 2014, 17th International Conference on Information Fusion (FUSION).

[15]  Ángel F. García-Fernández,et al.  Two-Layer Particle Filter for Multiple Target Detection and Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Jason L. Williams,et al.  An Efficient, Variational Approximation of the Best Fitting Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[17]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[18]  Sze Kim Pang,et al.  On MCMC-Based particle methods for Bayesian filtering: Application to multitarget tracking , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[19]  Ángel F. García-Fernández,et al.  Generalized optimal sub-pattern assignment metric , 2016, 2017 20th International Conference on Information Fusion (Fusion).

[20]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[21]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[22]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[23]  Mark R. Morelande,et al.  A Bayesian Approach to Multiple Target Detection and Tracking , 2007, IEEE Transactions on Signal Processing.

[24]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[25]  Jouko Lampinen,et al.  Rao-Blackwellized particle filter for multiple target tracking , 2007, Inf. Fusion.

[26]  Samuel J. Davey,et al.  Histogram-PMHT Unfettered , 2013, IEEE Journal of Selected Topics in Signal Processing.

[27]  Hans Driessen,et al.  Mixed Labelling in Multitarget Particle Filtering , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[28]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[29]  Du Yong Kim,et al.  A Particle Multi-Target Tracker for Superpositional Measurements Using Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[30]  Ángel F. García-Fernández,et al.  MCMC-based posterior independence approximation for RFS multitarget particle filters , 2014, 17th International Conference on Information Fusion (FUSION).

[31]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[32]  Ángel F. García-Fernández,et al.  Multitarget tracking using the Joint Multitrack Probability Density , 2009, 2009 12th International Conference on Information Fusion.

[33]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[34]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[35]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[36]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[37]  Ángel F. García-Fernández,et al.  Bayesian Sequential Track Formation , 2014, IEEE Transactions on Signal Processing.

[38]  A. Hero,et al.  Multitarget tracking using the joint multitarget probability density , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[40]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[41]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[42]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .