An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis

Polynomial chaos expansions (PCE) have seen widespread use in the context of uncertainty quantification. However, their application to structural reliability problems has been hindered by the limited performance of PCE in the tails of the model response and due to the lack of local metamodel error estimates. We propose a new method to provide local metamodel error estimates based on bootstrap resampling and sparse PCE. An initial experimental design is iteratively updated based on the current estimation of the limit-state surface in an active learning algorithm. The greedy algorithm uses the bootstrap-based local error estimates for the polynomial chaos predictor to identify the best candidate set of points to enrich the experimental design. We demonstrate the effectiveness of this approach on a well-known analytical benchmark representing a series system, on a truss structure and on a complex realistic frame structure problem.

[1]  B. Sudret,et al.  Reliability analysis of high-dimensional models using low-rank tensor approximations , 2016, 1606.08577.

[2]  V. Dubourg Adaptive surrogate models for reliability analysis and reliability-based design optimization , 2011 .

[3]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[4]  Bruno Sudret,et al.  Meta-model-based importance for reliability sensitivity analysis , 2014 .

[5]  M. Eldred,et al.  Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .

[6]  B. Sudret,et al.  Metamodel-based importance sampling for structural reliability analysis , 2011, 1105.0562.

[7]  Loic Le Gratiet,et al.  Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes , 2016, 1606.04273.

[8]  Nicolas Gayton,et al.  RPCM: a strategy to perform reliability analysis using polynomial chaos and resampling , 2010 .

[9]  Jack P. C. Kleijnen,et al.  Customized sequential designs for random simulation experiments: Kriging metamodeling and bootstrapping , 2008, Eur. J. Oper. Res..

[10]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[11]  B. Sudret,et al.  Reliability-based design optimization using kriging surrogates and subset simulation , 2011, 1104.3667.

[12]  R. Haftka,et al.  Application of bootstrap method in conservative estimation of reliability with limited samples , 2010 .

[13]  A. Kiureghian,et al.  Optimization algorithms for structural reliability , 1991 .

[14]  Armen Der Kiureghian,et al.  Comparison of finite element reliability methods , 2002 .

[15]  Nicolas Gayton,et al.  AK-SYS: An adaptation of the AK-MCS method for system reliability , 2014, Reliab. Eng. Syst. Saf..

[16]  Bruno Sudret,et al.  Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..

[17]  Maliki Moustapha,et al.  Quantile-based optimization under uncertainties using bootstrap polynomial chaos expansions , 2017 .

[18]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[19]  Nicolas Gayton,et al.  A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models , 2013, Reliab. Eng. Syst. Saf..

[20]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[21]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[22]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[23]  Enrico Zio,et al.  An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability , 2014, Reliab. Eng. Syst. Saf..

[24]  Jack P. C. Kleijnen,et al.  The correct Kriging variance estimated by bootstrapping , 2006, J. Oper. Res. Soc..

[25]  M. Balesdent,et al.  Kriging-based adaptive Importance Sampling algorithms for rare event estimation , 2013 .

[26]  Che-Chen Liou,et al.  Structural reliability using finite element method , 1992 .

[27]  Stefano Marelli,et al.  UQLab: A Framework for Uncertainty Quantification in Matlab , 2014 .

[28]  Mohammed J. Zaki Data Mining and Analysis: Fundamental Concepts and Algorithms , 2014 .

[29]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[30]  Stefano Marelli,et al.  Rare Event Estimation Using Polynomial-Chaos Kriging , 2017 .

[31]  Anne Dutfoy,et al.  Do Rosenblatt and Nataf isoprobabilistic transformations really differ , 2009 .

[32]  Stefano Marelli,et al.  A general framework for uncertainty quantification under non-Gaussian input dependencies , 2017 .

[33]  Sankaran Mahadevan,et al.  Efficient surrogate models for reliability analysis of systems with multiple failure modes , 2011, Reliab. Eng. Syst. Saf..

[34]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[35]  Dimos C. Charmpis,et al.  Application of line sampling simulation method to reliability benchmark problems , 2007 .

[36]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[37]  Thomas G. Dietterich Adaptive computation and machine learning , 1998 .

[38]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[39]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[40]  J. Beck,et al.  Stochastic Subset Optimization for optimal reliability problems , 2008 .

[41]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[42]  Michel Salaün,et al.  Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion , 2014, Reliab. Eng. Syst. Saf..