Microwave remote sensing from space

Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms--soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.

[1]  David H. Staelin,et al.  Passive microwave techniques for geophysical sensing of the Earth from satellites , 1981 .

[2]  T. T. Wilheit,et al.  A review of applications of microwave radiometry to oceanography , 1978 .

[3]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[4]  Calvin T. Swift,et al.  Passive microwave remote sensing of the ocean—A review , 1980 .

[5]  F.P. Bretherton,et al.  Earth system science and remote sensing , 1985, Proceedings of the IEEE.

[6]  Christian Mätzler,et al.  Snow mapping with active microwave sensors , 1984 .

[7]  F. Sabins Geologic Interpretation of Space Shuttle Radar Images of Indonesia , 1983 .

[8]  A. Viksne,et al.  SLR RECONNAISSANCE OF PANAMA , 1969 .

[9]  J. C. Comiso,et al.  Sea ice effective microwave emissivities from satellite passive microwave and infrared observations , 1983 .

[10]  E. Njoku,et al.  Microwave radiometric measurements of sea surface temperature from the seasat satellite: first results. , 1981, Science.

[11]  P. Gloersen,et al.  Nimbus 7 SMMR observations of the Bering Sea ice cover during March 1979 , 1983 .

[12]  Fawwaz T. Ulaby,et al.  The active and passive microwave response to snow parameters: 2. Water equivalent of dry snow , 1980 .

[13]  H. Macdonald,et al.  GEOLOGIC EVALUATION OF RADAR IMAGERY FROM DARIEN PROVINCE, PANAMA , 1969 .

[14]  L. Ippolito,et al.  Radio propagation for space communications systems , 1981, Proceedings of the IEEE.

[15]  Charles Elachi,et al.  Spaceborne Radar Subsurface Imaging in Hyperarid Regions , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Richard K. Moore,et al.  Simultaneous active and passive microwave response of the earth - The Skylab radscat experiment , 1974 .

[17]  H. Jay Zwally,et al.  Ice sheet topography by satellite altimetry , 1978, Nature.

[18]  Bruce M. Kendall,et al.  Measurement of ocean temperature and salinity via microwave radiometry , 1978 .

[19]  Peter Hoogeboom,et al.  Classification of Agricultural Crops in Radar Images , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Kevin J. Hussey,et al.  Global satellite measurements of water vapour, wind speed and wave height , 1981, Nature.

[21]  R. Chadwick,et al.  Radar remote sensing of the clear atmosphere—Review and applications , 1983, Proceedings of the IEEE.

[22]  R. Jordan The Seasat-A synthetic aperture radar system , 1980, IEEE Journal of Oceanic Engineering.

[23]  Eric M. Eliason,et al.  Pioneer Venus Radar results altimetry and surface properties , 1980 .

[24]  H. Jay Zwally,et al.  Passive microwave images of the polar regions and research applications , 1977, Polar Record.

[25]  W. Townsend,et al.  An initial assessment of the performance achieved by the Seasat-1 radar altimeter , 1980, IEEE Journal of Oceanic Engineering.

[26]  G. Schaber,et al.  Subsurface Valleys and Geoarcheology of the Eastern Sahara Revealed by Shuttle Radar , 1982, Science.

[27]  A. E. Lilley,et al.  Mariner 2 microwave radiometer experiment and results , 1964 .

[28]  R. Crippen,et al.  Detection of subsurface features in Seasat radar images of Means Valley, Mojave Desert, California , 1984 .

[29]  Alan L. Cassel,et al.  Microwave atmospheric temperature sounding - Effects of clouds on the Nimbus 5 satellite data , 1975 .

[30]  A Geological Interpretation of Seasat-Sar Imagery of Jamaica , 1984, The Journal of Geology.

[31]  T. Schmugge Remote Sensing of Soil Moisture: Recent Advances , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[32]  C. Mätzler,et al.  Investigations on snow parameters by radiometry in the 3- to 60-mm wavelength region , 1980 .

[33]  James P. Hollinger,et al.  Passive Microwave Measurements of Sea Surface Roughness , 1971 .

[34]  W. Nordberg,et al.  Measurements of Microwave Emission from a Foam-Covered, Wind-Driven Sea , 1971 .

[35]  Charles Elachi,et al.  Spaceborne and airborne imaging radar observations of sand dunes , 1981 .

[36]  W. Campbell,et al.  Aircraft measurements of microwave emission from Arctic Sea Ice , 1971 .

[37]  The Offshore Environment: Aperspective From Seasat-1 Sar Data , 1979 .

[38]  L. Dellwig,et al.  Shuttle Imaging Radar Experiment , 1982, Science.

[39]  P. S. Callahan,et al.  NASA scatterometer on NROSS: A system for global observations of oceanic winds , 1984 .

[40]  W. Peake Interaction of electromagnetic waves with some natural surfaces , 1959 .

[41]  Josefino C. Comiso,et al.  Antarctic sea ice microwave signatures and their correlation with in situ ice observations , 1984 .

[42]  D. H. Staelin,et al.  Passive remote sensing at microwave wavelengths , 1969 .

[43]  S. Running,et al.  Characterization of terrestrial ecosystems for biogeochemical studies using remote sensing , 1983 .

[44]  R. Moore,et al.  Radar sea return and the radscat satellite anemometer , 1972 .

[45]  F. D. Carsey,et al.  Arctic sea ice distribution at end of summer 1973–1976 from satellite microwave data , 1982 .

[46]  J. R. Wang,et al.  The dielectric properties of soil‐water mixtures at microwave frequencies , 1980 .

[47]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[48]  F. Ulaby,et al.  Radar signatures of terrain: Useful monitors of renewable resources , 1982, Proceedings of the IEEE.

[49]  Fawwaz T. Ulaby,et al.  Microwave response of snow , 1981 .

[50]  Robert M. Lerner,et al.  Measurement of the microwave properties of sea ice at 90 GHz and lower frequencies , 1981 .