The moving mesh semi-Lagrangian MMSISL method

Abstract We introduce a novel location-based moving mesh algorithm MMSISL in which the arrival points in the Semi-Implicit Semi-Lagrangian (SISL) algorithm are located by using an equidistribution strategy. This algorithm gives a natural coupling between moving mesh methods and SISL methods. It involves little extra cost in implementation as it exploits the interpolation methods already embedded in the SISL algorithm. We apply this method to a number of partial differential equation problems in one-dimension, each of which have sharply defined features. We show that using MMSISL leads to a markedly improved performance over fixed mesh methods, with significantly reduced errors. We also show that unlike many adaptive schemes, no issues arise in the MMSISL algorithm from a CFL condition imposed restriction on the time step.

[1]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[2]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[3]  A Quantitative Analysis of the Dissipation Inherent in Semi-Lagrangian Advection , 1988 .

[4]  J. Hyman Accurate Monotonicity Preserving Cubic Interpolation , 1983 .

[5]  Philip J. Rasch,et al.  On Shape-Preserving Interpolation and Semi-Lagrangian Transport , 1990, SIAM J. Sci. Comput..

[6]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[7]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[8]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[9]  A. Mcdonald Accuracy of Multiply-Upstream, Semi-Lagrangian Advective Schemes , 1984 .

[10]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[11]  A. Robert A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations , 1982 .

[12]  Chris J. Budd,et al.  Monge-Ampére based moving mesh methods for numerical weather prediction, with applications to the Eady problem , 2013, J. Comput. Phys..

[13]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[14]  Yu Wang,et al.  New generation of multi-scale NWP system (GRAPES): general scientific design , 2008 .

[15]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[16]  Carl de Boor,et al.  Piecewise monotone interpolation , 1977 .

[17]  Christopher J. Smith,et al.  The Semi-Lagrangian Method in Atmospheric Modelling , 2000 .

[18]  K. Morton,et al.  Numerical Solution of Partial Differential Equations: Introduction , 2005 .

[19]  Elena Celledoni,et al.  Semi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems , 2009, J. Sci. Comput..

[20]  A. Simmons,et al.  Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .

[21]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[22]  M. J. P. Cullen,et al.  Adaptive mesh method in the Met Office variational data assimilation system , 2011 .

[23]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[24]  Riccardo Fazio,et al.  Moving-Mesh Methods for One-Dimensional Hyperbolic Problems Using CLAWPACK , 2003 .

[25]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[26]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[27]  Jing-Mei Qiu,et al.  A Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere , 2014 .

[28]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .