Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575T)

Desulfotomaculum acetoxidans Widdel and Pfennig 1977 was one of the first sulfate-reducing bacteria known to grow with acetate as sole energy and carbon source. It is able to oxidize substrates completely to carbon dioxide with sulfate as the electron acceptor, which is reduced to hydrogen sulfide. All available data about this species are based on strain 5575T, isolated from piggery waste in Germany. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a Desulfotomaculum species with validly published name. The 4,545,624 bp long single replicon genome with its 4370 protein-coding and 100 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.

[1]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[2]  Lynne A. Goodwin,et al.  Complete genome sequence of Kytococcus sedentarius type strain (541T) , 2009, Standards in genomic sciences.

[3]  R. Amann,et al.  Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide , 2009, Environmental microbiology.

[4]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[5]  Paul Richardson,et al.  The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). , 2008, Environmental microbiology.

[6]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[7]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[8]  Nikos Kyrpides,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[9]  I-Min A. Chen,et al.  The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions , 2007, Nucleic Acids Res..

[10]  R. Amann,et al.  The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. , 2004, Environmental microbiology.

[11]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[12]  L. Jahnke,et al.  Stable Carbon Isotope Ratios of Lipid Biomarkers of Sulfate-Reducing Bacteria , 2004, Applied and Environmental Microbiology.

[13]  D. D. Des Marais,et al.  Stable Carbon Isotope Fractionation by Sulfate-Reducing Bacteria , 2003, Applied and Environmental Microbiology.

[14]  Christopher J. Lee,et al.  Multiple sequence alignment using partial order graphs , 2002, Bioinform..

[15]  C. Gomes,et al.  The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane‐bound oxygen‐reducing respiratory chain , 2001, FEBS letters.

[16]  J. Scholten,et al.  Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment , 2000, Microbial Ecology.

[17]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[18]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[19]  E. Stackebrandt,et al.  Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. , 1997, International journal of systematic bacteriology.

[20]  D. Boone,et al.  Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring , 1997 .

[21]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Fuchs,et al.  Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum , 1988, Archives of Microbiology.

[23]  G. Fuchs,et al.  Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulphovibrio autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. , 1988 .

[24]  A. Spormann,et al.  Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans , 1988, Archives of Microbiology.

[25]  F. Widdel,et al.  Phospholipid Ester-linked Fatty Acid Biomarkers of Acetate-oxidizing Sulphate-reducers and Other Sulphide-forming Bacteria , 1986 .

[26]  M. Collins,et al.  Respiratory Quinones of Sulphate-Reducing and Sulphur-Reducing Bacteria: A Systematic Investigation , 1986 .

[27]  F. Widdel,et al.  Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans , 1981, Archives of Microbiology.

[28]  F. Widdel,et al.  A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans , 1977, Archives of Microbiology.

[29]  T. D. Brock,et al.  Amorphous ferrous sulfide as a reducing agent for culture of anaerobes , 1977, Applied and environmental microbiology.

[30]  M. Rogosa Peptococcaceae, a New Family To Include the Gram-Positive, Anaerobic Cocci of the Genera Peptococcus, Peptostreptococcus, and Ruminococcus , 1971 .

[31]  J. Postgate,et al.  Classification of the spore-forming sulfate-reducing bacteria. , 1965, Bacteriological reviews.

[32]  S. Tasker,et al.  Bergey’s Manual of Systematic Bacteriology , 2010 .

[33]  Lynne A. Goodwin,et al.  Complete genome sequence of Kytococcus sedentarius type strain (541 T ) , 2009 .

[34]  R. Pado,et al.  Growth and antioxidant activity of Desulfotomaculum acetoxidans DSM 771 cultivated in acetate or lactate containing media. , 2007, Polish journal of microbiology.

[35]  F. Widdel The Genus Desulfotomaculum , 2006 .

[36]  R. Pado,et al.  The uptake and accumulation of iron by the intestinal bacterium Desulfotomaculum acetoxidans DSM 771. , 2005, Folia biologica.

[37]  H. Cypionka,et al.  Oxygen respiration by desulfovibrio species. , 2000, Annual review of microbiology.

[38]  P. Sneath,et al.  Approved lists of bacterial names. , 1980, The Medical journal of Australia.