Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables

Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. In previous work, a Bayesian model for truncation errors of perturbative expansions was adapted to EFTs. The model yields posterior probability distribution functions (pdfs) for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. A first application was made to chiral EFT for neutron-proton scattering using the semi-local potentials of Epelbaum, Krebs, and Meisner (EKM). Here we extend this application to consider a larger set of regulator parameters, energies, and observables as a general example of a statistical approach to truncation errors. The Bayesian approach allows for statistical validations of the assumptions and enables the calculation of posterior pdfs for the EFT breakdown scale. The statistical model is validated for EKM potentials whose convergence behavior is not distorted by regulator artifacts. For these cases, the posterior for the breakdown scale is consistent with EKM assumptions.

[1]  M. Hjorth-Jensen,et al.  Coupled-cluster computations of atomic nuclei , 2013, Reports on progress in physics. Physical Society.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  S. C. Pieper,et al.  Quantum Monte Carlo methods for nuclear physics , 2014, 1412.3081.

[4]  E. Bagnaschi,et al.  An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations , 2014, Journal of High Energy Physics.

[5]  R. Furnstahl,et al.  A recipe for EFT uncertainty quantification in nuclear physics , 2014, 1407.0657.

[6]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[7]  M. Freunek,et al.  Local chiral effective field theory interactions and quantum Monte Carlo applications , 2014, 1406.0454.

[8]  P. Winternitz,et al.  Formalism of Nucleon-Nucleon Elastic Scattering Experiments , 1978 .

[9]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[10]  E. Epelbaum,et al.  Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order , 2014, The European Physical Journal A.

[11]  Stoks,et al.  Magnetic moment interaction in nucleon-nucleon phase-shift analyses. , 1990, Physical review. C, Nuclear physics.

[12]  J. Kruschke Doing Bayesian Data Analysis: A Tutorial with R and BUGS , 2010 .

[13]  A. Ekstrom,et al.  Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions , 2015, 1506.02466.

[14]  R. Landau Quantum Mechanics II , 1990 .

[15]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[16]  M. Moravcsik,et al.  NUCLEON-NUCLEON SCATTERING EXPERIMENTS AND THEIR PHENOMENOLOGICAL ANALYSIS , 1960 .

[17]  C. Ray Smith,et al.  Maximum-entropy and Bayesian methods in science and engineering , 1988 .

[18]  P. Winternitz Scattering formalism for nonidentical spinor particles , 1980 .

[19]  L. Biedenharn,et al.  Neutron-Proton Scattering with Spin-Orbit Coupling. I. General Expressions , 1952 .

[20]  Charles W. Champ,et al.  Encyclopedia of Statistics in Quality and Reliability , 2007 .

[21]  Stoks,et al.  Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV. , 1993, Physical review. C, Nuclear physics.

[22]  W. Marsden I and J , 2012 .

[23]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[24]  T. Papenbrock,et al.  Effective field theory for nuclear vibrations with quantified uncertainties , 2015, 1510.02401.

[25]  Petr Navrátil,et al.  Ab initio no core shell model , 2013 .

[26]  Ying Liu,et al.  Simulation-efficient shortest probability intervals , 2013, Stat. Comput..

[27]  R. Furnstahl,et al.  Quantifying truncation errors in effective field theory , 2015, 1506.01343.

[28]  Bayesian methods for parameter estimation in effective field theories , 2009 .

[29]  R. Schiavilla,et al.  Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances , 2014, 1412.6446.

[30]  O. William Journal Of The American Statistical Association V-28 , 1932 .

[31]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[32]  M. Moravcsik,et al.  Amplitude systems for spin-1/2 particles , 1989 .

[33]  J. Dobaczewski,et al.  Error Estimates of Theoretical Models: a Guide , 2014, 1402.4657.

[34]  María M. Abad-Grau,et al.  Points of Significance: Bayesian networks , 2015, Nature Methods.

[35]  R. Furnstahl,et al.  Bayesian parameter estimation in effective field theories , 2008, 1511.03618.

[36]  E. Epelbaum,et al.  Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion. , 2014, Physical review letters.

[37]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[38]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[39]  M. Cacciari,et al.  Meaningful characterisation of perturbative theoretical uncertainties , 2011, 1105.5152.

[40]  P. B. Mackenzie,et al.  Constrained curve fitting , 2002 .