Image Fusion Using the Expectation-Maximization Algorithm and a Gaussian Mixture Model

Image fusion refers the process of combining multiple images of a scene to obtain a single composite image [1, 2, 3, 4]. The different images to be fused can come from different sensors of the same basic type or they may come from different types of sensors. The composite image should contain a more useful description of the scene than provided by any of the individual source images. This fused image should be more useful for human visual or machine perception. In recent years, image fusion has become an important and useful technique for image analysis, computer vision [4, 5, 6, 7], concealed weapon detection (CWD) [8,9], and autonomous landing guidance (ALG) [10, 11].

[1]  Saleem A. Kassam,et al.  RBFN restoration of nonlinearly degraded images , 1996, IEEE Trans. Image Process..

[2]  Rick S. Blum,et al.  An adaptive spatial diversity receiver for non-Gaussian interference and noise , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[3]  James Llinas,et al.  An introduction to multi-sensor data fusion , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[4]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[5]  Peter J. Burt,et al.  Enhanced image capture through fusion , 1993, 1993 (4th) International Conference on Computer Vision.

[6]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[7]  Michael C. Wicks,et al.  Sensors for military special operations and law enforcement applications , 1997 .

[8]  Pramod K. Varshney,et al.  Enhancement and fusion of data for concealed weapon detection , 1997, Defense, Security, and Sensing.

[9]  Rick S. Blum,et al.  Investigations of image fusion , 1999 .

[10]  Alexander Toet,et al.  Image fusion by a ration of low-pass pyramid , 1989, Pattern Recognit. Lett..

[11]  Pramod K. Varshney Multisensor data fusion , 1997 .

[12]  Jake K. Aggarwal,et al.  Multisensor Fusion for Computer Vision , 1993, NATO ASI Series.

[13]  Ravi K. Sharma,et al.  Probabilistic Image Sensor Fusion , 1998, NIPS.

[14]  Rick S. Blum,et al.  A hybrid image registration technique for a digital camera image fusion application , 2001, Inf. Fusion.

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[17]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[18]  Alexander Toet,et al.  Merging thermal and visual images by a contrast pyramid , 1989 .

[19]  T. Leen,et al.  Probabilistic model-based multisensor image fusion , 1999 .

[20]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[21]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[23]  Michael R. Franklin Application of an autonomous landing guidance system for civil and military aircraft , 1995, Defense, Security, and Sensing.

[24]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[25]  Duane P. Pond,et al.  Infrared-optical multisensor for autonomous landing guidance , 1995, Defense, Security, and Sensing.

[26]  Alfred O. Hero,et al.  Space-alternating generalized expectation-maximization algorithm , 1994, IEEE Trans. Signal Process..