Small RNA modifications in Alzheimer's disease

[1]  C. Dyck,et al.  Alzheimer's & Dementia: The Journal of the Alzheimer's Association , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[2]  M. Backens,et al.  Normal brain aging and Alzheimer's disease are associated with lower cerebral pH: an in vivo histidine 1H-MR spectroscopy study , 2019, Neurobiology of Aging.

[3]  Shuai Zhang,et al.  Identification of functional tRNA-derived fragments in senescence-accelerated mouse prone 8 brain , 2019, Aging.

[4]  F. Tuorto,et al.  Sperm RNA code programmes the metabolic health of offspring , 2019, Nature Reviews Endocrinology.

[5]  F. Panza,et al.  Do BACE inhibitor failures in Alzheimer patients challenge the amyloid hypothesis of the disease? , 2019, Expert review of neurotherapeutics.

[6]  Junchao Shi,et al.  tsRNAs: The Swiss Army Knife for Translational Regulation. , 2019, Trends in biochemical sciences.

[7]  Eden R Martin,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[8]  V. Oberbauer,et al.  tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development , 2018, Genes.

[9]  Tianxin Yang,et al.  A4312 Role of (Pro) Renin Receptor in Protein-Overload Nephropathy in Rats , 2018, Journal of Hypertension.

[10]  Duncan Ayers,et al.  Non-coding RNA influences in dementia , 2018, Non-coding RNA research.

[11]  Michaela Frye,et al.  RNA modifications modulate gene expression during development , 2018, Science.

[12]  P. Ivanov,et al.  The role of RNA modifications in the regulation of tRNA cleavage , 2018, FEBS letters.

[13]  Tianxin Yang,et al.  Role of (pro)renin receptor in albumin overload-induced nephropathy in rats. , 2018, American journal of physiology. Renal physiology.

[14]  A. Gebre,et al.  Targeting Renin–Angiotensin System Against Alzheimer’s Disease , 2018, Front. Pharmacol..

[15]  Tong Zhou,et al.  SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized for rRNA- and tRNA-derived Small RNAs , 2018, bioRxiv.

[16]  H. Chui,et al.  Review: Vascular dementia: clinicopathologic and genetic considerations , 2018, Neuropathology and applied neurobiology.

[17]  Xudong Zhang,et al.  Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs , 2018, Nature Cell Biology.

[18]  D. Goldman,et al.  Role of RNA modifications in brain and behavior , 2018, Genes, brain, and behavior.

[19]  J. Kabeerdoss,et al.  Y RNA derived small RNAs in Sjögren's syndrome: Candidate biomarkers? , 2017, International journal of rheumatic diseases.

[20]  Paul Schimmel,et al.  The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis , 2017, Nature Reviews Molecular Cell Biology.

[21]  Tao Pan,et al.  Dynamic RNA Modifications in Gene Expression Regulation , 2017, Cell.

[22]  S. Bottini,et al.  RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages , 2017, Cell Death & Disease.

[23]  T. Lowe,et al.  Small RNA Modifications: Integral to Function and Disease. , 2016, Trends in molecular medicine.

[24]  Xin Wang,et al.  The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: A meta-analysis , 2016, Journal of Clinical Neuroscience.

[25]  Wei Yan,et al.  Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications , 2016, Nature Reviews Genetics.

[26]  Xudong Zhang,et al.  Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder , 2016, Science.

[27]  Alvaro G. Hernandez,et al.  Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers , 2015, PloS one.

[28]  M. P. Kowalski,et al.  Functional roles of non-coding Y RNAs , 2015, The international journal of biochemistry & cell biology.

[29]  J. Satterlee,et al.  Novel RNA Modifications in the Nervous System: Form and Function , 2014, The Journal of Neuroscience.

[30]  V. Narry Kim,et al.  Emerging Roles of RNA Modification: m6A and U-Tail , 2014, Cell.

[31]  L. Ponto,et al.  Brain pH and Alzheimer’s pathology , 2014 .

[32]  Xiang-Dong Fu,et al.  CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration , 2014, Cell.

[33]  Xuemei Chen,et al.  Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage , 2014, Proceedings of the National Academy of Sciences.

[34]  H. Yeh,et al.  The Role of the Renin-Angiotensin System in Amyloid Metabolism of Alzheimer's Disease. , 2014, Acta Cardiologica Sinica.

[35]  C. Iadecola The Pathobiology of Vascular Dementia , 2013, Neuron.

[36]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[37]  Markus Glatzel,et al.  CLP1 links tRNA metabolism to progressive motor-neuron loss , 2013, Nature.

[38]  Xuemei Chen,et al.  Regulation of small RNA stability: methylation and beyond , 2012, Cell Research.

[39]  J. Schneider,et al.  National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease , 2012, Alzheimer's & Dementia.

[40]  M. Lovell,et al.  Oxidatively modified nucleic acids in preclinical Alzheimer's disease (PCAD) brain , 2011, Mechanisms of Ageing and Development.

[41]  P. Nelson,et al.  Epigenetic Silencing of Nucleolar rRNA Genes in Alzheimer's Disease , 2011, PloS one.

[42]  Renée L. Brost,et al.  Genetic and Biochemical Analysis of Yeast and Human Cap Trimethylguanosine Synthase , 2008, Journal of Biological Chemistry.

[43]  Z. Khachaturian Alzheimer's & Dementia: The Journal of the Alzheimer's Association , 2008, Alzheimer's & Dementia.

[44]  S. Noy,et al.  Is the distinction between Alzheimer's disease and vascular dementia possible and relevant? , 2003, Dialogues in clinical neuroscience.

[45]  J. Thornby,et al.  Is Mild Cognitive Impairment Prodromal for Vascular Dementia Like Alzheimer’s Disease? , 2002, Stroke.

[46]  R. Mohs,et al.  Consortium to establish a registry for Alzheimer's disease (CERAD) clinical and neuropsychological assessment of Alzheimer's disease. , 2002, Psychopharmacology bulletin.

[47]  Serge Gauthier,et al.  Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial , 2002, The Lancet.

[48]  C. Will,et al.  Spliceosomal UsnRNP biogenesis, structure and function. , 2001, Current opinion in cell biology.

[49]  S. M. Sumi,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part X. Neuropathology Confirmation of the Clinical Diagnosis of Alzheimer's Disease , 1995, Neurology.

[50]  C. Clark,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) , 1994, Neurology.

[51]  S. M. Sumi,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) , 1991, Neurology.

[52]  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019 .

[53]  Peter T Nelson,et al.  A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer's disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. , 2013, Journal of Alzheimer's disease : JAD.

[54]  W. Markesbery,et al.  Increased 5S rRNA oxidation in Alzheimer's disease. , 2012, Journal of Alzheimer's disease : JAD.