Curating NASA's Extraterrestrial Samples - Past, Present, and Future

Abstract The NASA Johnson Space Center Astromaterials Acquisition and Curation Office has the unique responsibility to curate NASA's extraterrestrial samples – from past and forthcoming missions – into the indefinite future. Presently curation includes documentation, preservation, preparation, and distribution of samples from the Moon, asteroids, comets, the solar wind, and the planet Mars. Each of these sample sets has a unique history and comes from a unique environment. The curation laboratories and procedures developed over forty years have proven both necessary and sufficient to serve the evolving needs of a worldwide research community. A new generation of sample return missions is being planned and proposed to destinations across the solar system. Curation must evolve to meet the increased challenges of these new samples.

[1]  M. Zolensky,et al.  Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA , 1994 .

[2]  Scott A. Sandford,et al.  Detection of cometary amines in samples returned by Stardust , 2008 .

[3]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[4]  S. Bajt,et al.  Stardust interstellar preliminary examination (ISPE). , 2009 .

[5]  Comets and the early solar system , 2008 .

[6]  Simon F. Green,et al.  Characteristics of cometary dust tracks in Stardust aerogel and laboratory calibrations , 2008 .

[7]  L. Taylor,et al.  Early formation of evolved asteroidal crust , 2009, Nature.

[8]  K. E. BULLEN,et al.  Origin of the Moon , 1951, Nature.

[9]  R. C. Wiens,et al.  The Genesis Discovery Mission: Return of Solar Matter to Earth , 2003 .

[10]  A. Rubin,et al.  Lewis Cliff 85332: A unique carbonaceous chondrite , 1990 .

[11]  Lennart Larsson,et al.  Lunar dust: A negative control for biomarker analyses of extraterrestrial samples? , 2001 .

[12]  B. Mason,et al.  Catalog of Antarctic Meteorites, 1977-1978 , 1980 .

[13]  Ralph P. Harvey,et al.  The Origin and Significance of Antarctic Meteorites , 2003 .

[14]  D. Wilhelms,et al.  To a rocky moon , 1993 .

[15]  W. Compston,et al.  U‐Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass‐resolution ion microprobe , 1984 .

[16]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .

[17]  Jim C. P. Liou,et al.  Detection of asteroidal dust particles from known families in near-Earth orbits , 1994 .

[18]  L. Borg,et al.  Big returns on small samples: Lessons learned from the analysis of small lunar samples and implications for the future scientific exploration of the Moon , 2006 .

[19]  R. Wiens,et al.  Solar and Solar-Wind Composition Results from the Genesis Mission , 2007 .

[20]  U. Marvin The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite , 1983 .

[21]  Crystallography of hornblende amphibole in LAP04840 R chondrite and implication for its metamorphic history , 2009 .

[22]  P. D. Stabekis,et al.  Lessons learned during Apollo lunar sample quanrantine and sample curation , 1998 .

[23]  William K. Hartmann,et al.  Satellite-Sized Planetesimals and Lunar Origin , 1975 .

[24]  Paul H. Johnson,et al.  Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites , 1984 .

[25]  D. Bogard,et al.  Gas Analysis of the Lunar Surface , 1970, Science.

[26]  Georg Delisle,et al.  The meteorite collection sites of Antarctica , 1992 .

[27]  Kevin Righter,et al.  Standards for the U.S. Antarctic meteorite program collection: Preserving outer space in museum space , 2006 .

[28]  Nicolas Thomas,et al.  Scientific rationale for the D-CIXS X-ray spectrometer on board ESA's SMART-1 mission to the Moon , 2003 .

[29]  Michael E. Zolensky,et al.  Impact Features and Projectile Residues in Aerogel Exposed on Mir , 2000 .

[30]  Hope Ami Ishii,et al.  Rapid extraction of dust impact tracks from silica aerogel by ultrasonic microblades , 2005 .

[31]  J. C. Mclane,et al.  Lunar Receiving Laboratory , 1967, Science.

[32]  Manuel Grande,et al.  The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon , 2009 .

[33]  M. Zolensky Reports Refractory Interplanetary Dust Particles , 1987, Science.

[34]  Judith H. Allton,et al.  Genesis Solar Wind Array Collector Cataloging Status , 2009 .

[35]  Judith Haley Allton,et al.  Catalog of Apollo lunar surface geological sampling tools and containers , 1989 .

[36]  Scott Messenger,et al.  Opportunities for the stratospheric collection of dust from short‐period comets , 2002 .

[37]  M. Zolensky,et al.  A tenfold increase in the abundance of large solid particles in the stratosphere, as measured over the period 1976–1984 , 1989 .

[38]  E. Scott A new kind of primitive chondrite, Allan Hills 85085 , 1988 .

[39]  H. McSween,et al.  Petrology of the unbrecciated eucrites , 2009 .

[40]  Masaru Yoshida,et al.  Discovery of the Yamato Meteorites in 1969 , 2010 .

[41]  K. Righter,et al.  Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system , 2007 .

[42]  A. Davis,et al.  Refractory inclusions from the ungrouped carbonaceous chondrites MacAlpine Hills 87300 and 88107 , 2000 .

[43]  R. Clayton,et al.  A new metal‐rich chondrite grouplet , 2001 .

[44]  William Marshall,et al.  Water and More: An Overview of LCROSS Impact Results , 2010 .

[45]  M. Dyar,et al.  The LaPaz Icefield 04840 meteorite : Mineralogy, metamorphism, and origin of an amphibole-and biotite-bearing R chondrite , 2008 .

[46]  K. McKeegan Oxygen Isotopes in Refractory Stratospheric Dust Particles: Proof of Extraterrestrial Origin , 1987, Science.

[47]  Saša Bajt,et al.  Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2 , 2010 .

[48]  M. Zolensky,et al.  Suitability of silica aerogel as a capture medium for interplanetary dust , 1992 .

[49]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[50]  Sylvia L. Miller,et al.  Planning considerations for a Mars Sample Receiving Facility: summary and interpretation of three design studies. , 2009, Astrobiology.

[51]  F. Howie The Care and conservation of geological material : minerals, rocks, meteorites, and lunar finds , 1992 .

[52]  B. Weiss,et al.  Letter. A unique glimpse into asteroidal melting processes in the early solar system from the Graves Nunatak 06128/06129 achondrites , 2008 .

[53]  Lucy Berthoud,et al.  ANALYSIS OF INTERPLANETARY DUST , 1994 .

[54]  Akira Fujiwara,et al.  Hayabusa—Its technology and science accomplishment summary and Hayabusa-2 , 2006 .

[55]  L. Taylor,et al.  Petrogenesis of lunar meteorite EET 96008 , 2003 .

[56]  D. Griffin Terrestrial Microorganisms at an Altitude of 20,000 m in Earth's Atmosphere , 2004 .

[57]  J. Delaney Lunar basalt breccia identified among Antarctic meteorites , 1989, Nature.

[58]  D. Brownlee,et al.  Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission , 2009, Science.

[59]  Rhonda M. Stroud,et al.  Graves Nunataks 95209: A snapshot of metal segregation and core formation , 2006 .

[60]  Michael E. Zolensky,et al.  Curation, spacecraft recovery, and preliminary examination for the Stardust mission: A perspective from the curatorial facility , 2008 .

[61]  R. Morris,et al.  Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling , 2009 .

[62]  M. Fulchignoni,et al.  E-type asteroid (2867) steins : flyby target for rosetta , 2007 .

[63]  J. Elsila,et al.  Cometary glycine detected in samples returned by Stardust , 2009 .

[64]  W. Huebner,et al.  Physical Processes in Comets , 1976 .

[65]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[66]  Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors , 2003, astro-ph/0312460.

[67]  S. Messenger Identification of molecular-cloud material in interplanetary dust particles , 2000, Nature.

[68]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[69]  Ian A. Franchi,et al.  The Genesis Solar-Wind Collector Materials , 2003 .

[70]  John H. Jones,et al.  Brownleeite: A new manganese silicide mineral in an interplanetary dust particle , 2010 .

[71]  E. Grün,et al.  In situ measurements of interstellar dust with the Ulysses and Galileo spaceprobes , 1996 .

[72]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[73]  T. Burbine Could G‐class asteroids be the parent bodies of the CM chondrites? , 1998 .