Magnetoresistive Sensors and Magnetic Nanoparticles for Biotechnology

Magnetoresistive biosensors use a new detection method for molecular recognition reactions based on two recently developed techniques and devices: Magnetic markers and XMR sensors, where XMR means either giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR). The markers are specifically attached to the target molecules, and their magnetic stray field is picked up by an embedded magnetoresistive sensor as a change of the electrical resistance. Compared to established, e.g., fluorescent, detection methods, magnetic biosensors have a number of advantages, including low molecular detection limits, flexibility, and the direct availability of an electronic signal suitable for further automated analysis. This makes them a promising choice for the detection units of future widespread and easy-to-use lab-on-a-chip systems or biochips. In this article, we discuss recent advances in this field and compare possible approaches toward single molecule detection.

[1]  A. Vrij,et al.  Monodisperse Colloidal Silica Spheres from Tetraalkoxysilanes: Particle Formation and Growth Mechanism , 1992 .

[2]  P. Weiss,et al.  Molecular Rulers for Scaling Down Nanostructures , 2001, Science.

[3]  Schreiber,et al.  Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. , 1986, Physical review letters.

[4]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[5]  K. Yosida,et al.  Magnetic Properties of Cu-Mn Alloys , 1957 .

[6]  Stuart S. P. Parkin,et al.  The magic of magnetic multilayers , 1998, IBM J. Res. Dev..

[7]  R. Colton,et al.  The BARC biosensor applied to the detection of biological warfare agents. , 2000, Biosensors & bioelectronics.

[8]  M. Bawendi,et al.  A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. , 1999, Angewandte Chemie.

[9]  R. A. Ali-zade Structure and Magnetic Properties of Polymer Microspheres Filled with Magnetite Nanoparticles , 2004 .

[10]  Dmitry P. Dinega,et al.  Eine aus der Lösung zugängliche neue Kristallstruktur von Cobalt , 1999 .

[11]  G. Meisenholder,et al.  POSTMODERN CULTURE : MAXIMIZING CELL CULTURE OUTPUT AT EVERY LEVEL , 1999 .

[12]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[13]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[14]  A. Pühler,et al.  Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. , 2004, Biosensors & bioelectronics.

[15]  G. A. Prinz,et al.  Novel absolute linear displacement sensor utilizing giant magnetoresistance elements , 1997 .

[16]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[17]  T. Kasuya,et al.  A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model , 1956 .

[18]  Gareth Thomas,et al.  New magnetic nanoparticles for biotechnology. , 2004, Journal of biotechnology.

[19]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[20]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[21]  C. Kittel,et al.  INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .

[22]  Gil U. Lee,et al.  A biosensor based on magnetoresistance technology. , 1998, Biosensors & bioelectronics.

[23]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[24]  A. Pühler,et al.  Detection and manipulation of biomolecules by magnetic carriers. , 2004, Journal of biotechnology.

[25]  A. Pühler,et al.  Absence of intrinsic electric conductivity in single dsDNA molecules. , 2004, Journal of biotechnology.

[26]  D. Kriz,et al.  Magnetic Transducers in Biosensors and Bioassays , 1999 .