Corneal confocal microscopy reveals small nerve fibre loss correlating with motor function in adult spinal muscular atrophy

5q Spinal muscular atrophy (SMA) is a progressive, inherited, and severely disabling – yet treatable – motor neuron disease. Although treatment options have evolved in recent years, biomarkers for treatment monitoring and prognosis prediction remain elusive. Here, we investigated the utility of corneal confocal microscopy (CCM), a non‐invasive imaging technique to quantify small corneal nerve fibres in vivo, as a diagnostic tool in adult SMA.

[1]  T. Rassaf,et al.  Corneal confocal microscopy to detect early immune‐mediated small nerve fibre loss in AL amyloidosis , 2022, Annals of clinical and translational neurology.

[2]  Lu Chen,et al.  Small fiber neuropathy for assessment of disease severity in amyotrophic lateral sclerosis: corneal confocal microscopy findings , 2022, Orphanet Journal of Rare Diseases.

[3]  Daniel B. Russakoff,et al.  Corneal confocal microscopy demonstrates axonal loss in different courses of multiple sclerosis , 2021, Scientific Reports.

[4]  S. Pro,et al.  WE-111. Age-related sensory neuropathy in patients with spinal muscular atrophy type 1 , 2021, Clinical Neurophysiology.

[5]  H. Hartung,et al.  Corneal confocal microscopy differentiates inflammatory from diabetic neuropathy , 2021, Journal of neuroinflammation.

[6]  Z. Mahfoud,et al.  Corneal Confocal Microscopy Identifies Parkinson's Disease with More Rapid Motor Progression , 2021, Movement disorders : official journal of the Movement Disorder Society.

[7]  X. Liu,et al.  Corneal sub‐basal whorl‐like nerve plexus: a landmark for early and follow‐up evaluation in transthyretin familial amyloid polyneuropathy , 2020, European journal of neurology.

[8]  R. Finkel,et al.  Spinal muscular atrophy — insights and challenges in the treatment era , 2020, Nature Reviews Neurology.

[9]  Sohita Dhillon Risdiplam: First Approval , 2020, Drugs.

[10]  P. Smeriglio,et al.  The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment , 2020, Journal of personalized medicine.

[11]  E. Mercuri,et al.  Measuring Outcomes in Adults with Spinal Muscular Atrophy - Challenges and Future Directions - Meeting Report. , 2020, Journal of neuromuscular diseases.

[12]  A. Cerami,et al.  Corneal confocal microscopy: ready for prime time , 2020, Clinical & experimental optometry.

[13]  H. Reichmann,et al.  Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study , 2020, The Lancet Neurology.

[14]  G. Comi,et al.  MRI patterns of muscle involvement in type 2 and 3 spinal muscular atrophy patients , 2019, Journal of Neurology.

[15]  D. Borsook,et al.  C-Fiber Assays in the Cornea vs. Skin , 2019, Brain sciences.

[16]  Sheridan M. Hoy Onasemnogene Abeparvovec: First Global Approval , 2019, Drugs.

[17]  C. Cannon,et al.  The role of survival motor neuron protein (SMN) in protein homeostasis , 2018, Cellular and Molecular Life Sciences.

[18]  Ewout J. N. Groen,et al.  Advances in therapy for spinal muscular atrophy: promises and challenges , 2018, Nature Reviews Neurology.

[19]  R. J. Ramamurthi,et al.  Nusinersen versus Sham Control in Infantile‐Onset Spinal Muscular Atrophy , 2017, The New England journal of medicine.

[20]  Adnan Khan,et al.  Corneal Confocal Microscopy: An Imaging Endpoint for Axonal Degeneration in Multiple Sclerosis. , 2017, Investigative ophthalmology & visual science.

[21]  C. McGhee,et al.  Corneal nerve microstructure in Parkinson’s disease , 2017, Journal of Clinical Neuroscience.

[22]  G. Mentis,et al.  Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy , 2017, Nature Neuroscience.

[23]  Chunyi Zhou,et al.  Defects in Motoneuron–Astrocyte Interactions in Spinal Muscular Atrophy , 2016, The Journal of Neuroscience.

[24]  H. Hartung,et al.  Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy , 2015, Annals of clinical and translational neurology.

[25]  Mohammad A. Dabbah,et al.  Small Nerve Fiber Quantification in the Diagnosis of Diabetic Sensorimotor Polyneuropathy: Comparing Corneal Confocal Microscopy With Intraepidermal Nerve Fiber Density , 2015, Diabetes Care.

[26]  E. Grisan,et al.  Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis , 2014, Front. Aging Neurosci..

[27]  T. Gillingwater,et al.  SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. , 2014, Human molecular genetics.

[28]  H. Uysal,et al.  Sensorimotor polyneuropathy in patients with SMA type‐1: Electroneuromyographic findings , 2013, Muscle & nerve.

[29]  K. Digre,et al.  Corneal confocal microscopy is efficient, well‐tolerated, and reproducible , 2013, Journal of the peripheral nervous system : JPNS.

[30]  T. Yonekawa,et al.  Peripheral nerve abnormalities in pediatric patients with spinal muscular atrophy , 2013, Brain and Development.

[31]  Mitra Tavakoli,et al.  Corneal confocal microscopy detects small‐fiber neuropathy in Charcot–Marie–Tooth disease type 1A patients , 2012, Muscle & nerve.

[32]  L. Rubin,et al.  A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. , 2012, Developmental biology.

[33]  Michael J. O'Donovan,et al.  Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy , 2011, Neuron.

[34]  E. Tizzano,et al.  The Developmental Pattern of Myotubes in Spinal Muscular Atrophy Indicates Prenatal Delay of Muscle Maturation , 2009, Journal of neuropathology and experimental neurology.

[35]  M. Yanagisawa,et al.  In Vivo Confocal Microscopy of Hereditary Sensory and Autonomic Neuropathy , 2008, Current eye research.

[36]  N. Romani,et al.  Characterization of antigen-presenting cells in fresh and cultured human corneas using novel dendritic cell markers. , 2007, Investigative ophthalmology & visual science.

[37]  Kanxing Zhao,et al.  Existence of small slow-cycling Langerhans cells in the limbal basal epithelium that express ABCG2. , 2007, Experimental eye research.

[38]  S. Jablonka,et al.  Distinct and overlapping alterations in motor and sensory neurons in a mouse model of spinal muscular atrophy. , 2006, Human molecular genetics.

[39]  R. Kothary,et al.  Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology. , 2005, Experimental cell research.

[40]  P. Hossain,et al.  Early detection of diabetic peripheral neuropathy with corneal confocal microscopy , 2005, The Lancet.

[41]  B. Vollmar,et al.  In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[42]  W. Schlote,et al.  Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy , 2003, Neurology.

[43]  J. Melki,et al.  Deletion of Murine SMN Exon 7 Directed to Skeletal Muscle Leads to Severe Muscular Dystrophy , 2001, The Journal of cell biology.

[44]  J. Melki,et al.  Spinal muscular atrophy. , 1997, Current opinion in neurology.

[45]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[46]  G. Hamilton,et al.  Spinal muscular atrophy: going beyond the motor neuron. , 2013, Trends in molecular medicine.

[47]  C. Mathew,et al.  Prenatal onset spinal muscular atrophy. , 1999, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[48]  V. Dubowitz Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. , 1999, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.