On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems
暂无分享,去创建一个
[1] F. Gesztesy,et al. Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators , 2004, math/0408074.
[2] Matthias Lesch,et al. On the deficiency indices and self-adjointness of symmetric Hamiltonian systems , 2003 .
[3] F. Gesztesy,et al. On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[4] L. Sakhnovich. Basic Facts on Weyl – Titchmarsh Theory , 2022 .
[5] Andrei Osipov. On some issues related to the moment problem for the band matrices with operator elements , 2002 .
[6] Alexander Sakhnovich,et al. Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems , 2002 .
[7] A. G. Kostyuchenko,et al. Complete Indefiniteness Tests for Jacobi Matrices with Matrix Entries , 2001 .
[8] F. Gesztesy,et al. Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001, math/0102040.
[9] A. S. Osipov. Some Properties of Resolvent Sets of Second-Order Difference Operators with Matrix Coefficients , 2000 .
[10] Rafael Obaya,et al. Ergodic properties and Weyl M-functions for random linear Hamiltonian systems , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[11] Antonio J. Durán,et al. N-EXTREMAL MATRICES OF MEASURES FOR AN INDETERMINATE MATRIX MOMENT PROBLEM , 2000 .
[12] F. Gesztesy,et al. Uniqueness Results for Matrix-Valued Schr\"odinger, Jacobi, and Dirac-Type Operators , 2000, math/0004120.
[13] B. Simon,et al. On Local Borg–Marchenko Uniqueness Results , 1999, math/9910089.
[14] M. Malamud,et al. The Inverse Spectral Problem for First Order Systems on the Half Line , 1998, math/9805033.
[15] G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .
[16] H. Holden,et al. Borg-Type Theorems for Matrix-Valued Schrödinger Operators , 1999, math/9905143.
[17] Steve Clark,et al. Weyl-titchmarsh M -function Asymptotics for Matrix-valued Schr¨odinger Operators , 2022 .
[18] Lev A. Sakhnovich,et al. Spectral Theory of Canonical Differential Systems. Method of Operator Identities , 1999 .
[19] P. López-Rodríguez. Riesz's Theorem for Orthogonal Matrix Polynomials , 1999 .
[20] A. G. Kostyuchenko,et al. Generalized Jacobi matrices and deficiency numbers of ordinary differential operators with polynomial coefficients , 1999 .
[21] A. G. Kostyuchenko,et al. Three-term recurrence relations with matrix coefficients. The completely indefinite case , 1998 .
[22] H. Holden,et al. Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies , 1997, solv-int/9705019.
[23] F. Gesztesy,et al. On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.
[24] Barry Simon,et al. m-Functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices , 1997 .
[25] Lev A. Sakhnovich,et al. Interpolation Theory and Its Applications , 1997 .
[26] F. Gesztesy,et al. An Addendum to Krein's Formula , 1997, funct-an/9711003.
[27] A. Osipov. Integration of non-abelian langmuir type lattices by the inverse spectral problem method , 1997 .
[28] B. Simon,et al. Multiparticle Quantum Scattering with Applications to Nuclear Atomic and Molecular Physics , 1997 .
[29] H. Holden,et al. ON TRACE FORMULAS FOR SCHRODINGER-TYPE OPERATORS , 1997 .
[30] G. Teschl,et al. On isospectral sets of Jacobi operators , 1996 .
[31] G. Teschl,et al. Commutation Methods for Jacobi Operators , 1996 .
[32] Antonio J. Durán,et al. ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .
[33] Israel Gohberg,et al. Inverse spectral problems for difference operators with rational scattering matrix function , 1994 .
[34] W. Assche,et al. Orthogonal matrix polynomials and higher-order recurrence relations , 1993, math/9310220.
[35] B. Simon,et al. On the Toda and Kac-van Moerbeke Systems , 2022 .
[36] Albert Schneider,et al. On the Titchmarsh‐Weyl Coefficients for Singular S‐Hermitian Systems II , 1993 .
[37] A. Sakhnovich,et al. SPECTRAL FUNCTIONS OF A CANONICAL SYSTEM OF ORDER $ 2n$ , 1992 .
[38] M. Gekhtman,et al. Inverse problem of the spectral analysis and non-Abelian chains of nonlinear equations , 1990 .
[39] Allan M. Krall,et al. M (λ) theory for singular Hamiltonian systems with two singular points , 1989 .
[40] B. Simon,et al. Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .
[41] F. Atkinson. On the order of magnitude of Titchmarsh-Weyl functions , 1988 .
[42] M. Shmoish,et al. Integration of some chains of nonlinear difference equations by the method of the inverse spectral problem , 1986 .
[43] J. K. Shaw,et al. On Boundary Value Problems for Hamiltonian Systems with Two Singular Points , 1984 .
[44] A. Aptekarev,et al. The Scattering Problem for a Discrete Sturm-Liouville Operator , 1984 .
[45] J. K. Shaw,et al. Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .
[46] J. K. Shaw,et al. The Asymptotic Form of the Titchmarsh‐Weyl Coefficient for Dirac Systems , 1983 .
[47] J. K. Shaw,et al. Parameterization of the M(λ) function for a Hamiltonian system of limit circle type , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[48] Jeffrey S. Geronimo,et al. Scattering theory and matrix orthogonal polynomials on the real line , 1982 .
[49] J. K. Shaw,et al. ON THE SPECTRUM OF A SINGULAR HAMILTONIAN SYSTEM , 1982 .
[50] J. K. Shaw,et al. On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .
[51] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[52] Erich Müller-Pfeiffer,et al. Spectral theory of ordinary differential operators , 1981 .
[53] W. N. Everitt,et al. On the asymptotic form of the Titchmarsh-Weyl m-coefficient† , 1978 .
[54] S. A. Orlov,et al. NESTED MATRIX DISKS ANALYTICALLY DEPENDING PARAMETER, AND THEOREMS ON THE INVARIANCE RADII OF LIMITING DISKS , 1976 .
[55] Masahisa Fukushima,et al. A spectral representation on ordinary linear difference equation with operator‐valued coefficients of the second order , 1976 .
[56] V. I. Kogan,et al. 1.—On Square-integrable Solutions of Symmetric Systems of Differential Equations of Arbitrary Order. , 1976, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[57] R. Carey. A unitary invariant for pairs of self-adjoint operators. , 1976 .
[58] E. Coddington,et al. Spectral theory of ordinary differential operators , 1975 .
[59] W. N. Everitt. Integrable-Square, Analytic Solutions of Odd-Order, Formally Symmetric, Ordinary Differential Equations , 1972 .
[60] W. N. Everitt. On a Property of the M -Coefficient of a Secondorder Linear Differential Equation , 1972 .
[61] W. N. Everitt,et al. VII.—On the Spectrum of Ordinary Second Order Differential Operators. , 1969, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[62] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .
[63] W. N. Everitt. SINGULAR DIFFERENTIAL EQUATIONS II; SOME SELF-ADJOINT EVEN ORDER CASES , 1967 .
[64] T. Asahi. Spectral Theory of the Difference Equations , 1966 .
[65] W. N. Everitt. Singular differential equations I: The even order case , 1964 .
[66] F. V. Atkinson,et al. Discrete and Continuous Boundary Problems , 1964 .
[67] Nam Parshad Bhatia,et al. Lectures on ordinary differential equations , 1964 .
[68] W. N. Everitt. Fourth order singular differential equations , 1963 .
[69] V. A. Marchenko,et al. The Inverse Problem of Scattering Theory , 1963 .
[70] W. N. Everitt. Integrable-square solutions of ordinary differential equations (ii) , 1959 .
[71] N. Aronszajn,et al. On exponential representations of analytic functions in the upper half-plane with positive imaginary part , 1956 .
[72] H. Weyl,et al. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .